0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

New therapeutic applications of retinoid-type compounds.

  • 작성자한진
  • 작성일2006-08-19 17:53:45
  • 조회수3279
  • 첨부파일첨부파일
New therapeutic applications of retinoid-type compounds. Spanish National Research Council (Consejo Superior de Investigaciones Cientificas, CSIC) Retinoid-type compounds can modulate the uncoupling proteins (UCP) activity and increase or decrease the heat dissipation in cells. These compounds could be used in the treatment of obesity or cachexia present in cancer patients. Licensing contact Pablo Zamorano Technology Transfer Expert, Technology Transfer Office Request more information Mechanism of action Retinoid-type compounds can be used to prepare a medicament being capable of in vivo modulating the uncoupling activity of UCP2. Industry sectors Pharmaceutical Therapeutic targets Metabolism Metabolism: Obesity Full description SUMMARY A group of researchers has determined a new use for retinoid- type compounds. These compounds can modulate the uncoupling proteins (UCP) activity and increase or decrease the heat dissipation in cells. These compounds could be used in the treatment of obesity or cachexia present in cancer patients. TECHNOLOGY DESCRIPTION Retinoids and, particularly retinoic acid, are known as natural molecules with important effects on cell differentiation. Retinoic acid (vitamin A acid) has found a very effective application in the treatment of severe forms of acne. The new therapeutic applications considered for the retinoic acid point towards another field, i.e. that of disorders and diseases associated to the increase or decrease of the expression or the activity of uncoupling proteins. Cellular respiration is a mechanism of oxidation of carbonated compounds which releases energy. It takes place in the mitochondria which are the organs responsible for cellular respiration. The so released energy is captured by the organism in diverse forms, particularly the synthesis of living matter, cell preservation, etc. If recovery of the energy is defective, oxidation continues but a major proportion of this energy is immediately dissipated as heat. Rupture of the link between respiration and energy recovery at mitochondria level is named uncoupling. The excessive production of heat can be regulated by two types of mechanisms: a) through the regulation of the genes encoded for certain proteins called uncoupling proteins or UCP proteins; or b) through a direct activation of the same proteins. Various UCP proteins have already been identified as responsible for uncoupling respiration and thus for the dissipation of a portion of the energy as heat in mammals. This activity is of major relevance as UCP proteins can be considered therapeutic targets for the treatment of pathologies, disorders or diseases being associated to the regulation of energy consumption. Brown fat tissue, specialized in thermogenesis possess an uncoupling protein (UCP1). Another uncoupling protein, named UCP2, displays a high structural and functional homology with UCP1 but interestingly it is expressed in many human tissues, and its uncoupling activity is activated by retinoids. The fact that UCP2 is present in many human tissues, particularly in white adipose tissue, and that it has been demonstrated that UCP2 expression is increased in mice fed a high-fat diet and by leptin, seems to indicate that this protein could be a good target for the development of new anti-obesity compounds or for the treatment of cachexia in cancer patients. It is important to stress that obesity is a major problem in the majority of industrialized countries, in such a degree that obesity is frequently associated to serious pathologies as some type of diabetes or even to hypertension. The inventors describe in a patent application that it was possible to act on uncoupling proteins by using retinoid-type compounds. Thus, retinoid-type compounds can be used to prepare a medicament being capable of in vivo modulating the uncoupling activity of UCP2. INNOVATIVE ASPECTS & COMPETITIVE ADVANTAGES The use of already know compounds for the treatment of new pathologies, which are designated as physiological disorders and diseases linked to the perturbation of the uncoupling activity of uncoupling proteins. Examples of these type of pathologies include among others, obesity or cachexia in cancer patients. CURRENT STAGE OF DEVELOPMENT Development phase. The results obtained are performed in vitro. In vivo assays would be necessary to characterize the activity of the compounds. Patent information European patent granted EP1018338. US patent pending US2002165280 and US2003229143. Type of business relationship sought License agreement. More information available on the web Please visit http://www.csic.es.
Total406 [ page1/28 ]
No. 제목 작성자 작성일 조회수
406 한진, 김형규, 염재범 교수님과 함께한 2024 Spring Congress on Lipid and Atherosclerosis of KSOLA 춘계 학술대회 수상 2건 2024.04.18 작성자 2024.04.18 2
405 인제대 의과대학 김형규 교수, 생리학 분야 최고 학술상 수상 2023.11.09 관리자 2023.11.09 49
404 인제대, 과기정통부 ‘2023년도 기초연구실 지원사업’ 선정 2023.09.13 관리자 (web_admin) 2023.09.13 86
403 인제대 교수팀 '돌연사 주범 심부전 원인 규명' 2023.09.13 관리자 (web_admin) 2023.09.13 73
402 2022학년도 인제학술상 수상자 선정 결과 2023.01.05 관리자 2023.01.05 111
401 안전관리 우수연구실 인증 취득 2023.01.05 관리자 2023.01.05 65
400 한진교수 화의자의학상 수상 2023.01.05 관리자 2023.01.05 128
399 이온통로 학회 -Amy 포스터상 수상 2019.01.15 김형규 2019.01.15 2,603
398 센터 겸임교수 조성우 교수 - 한빛사 -JACC Vascular Imaging 2018.12.08 김형규 2018.12.08 2,816
397 2017 IMPACT Symposium 개최 첨부파일 2017.10.31 김보현 2017.10.31 2,603
396 경암바이오유스 2017 첨부파일 2017.08.11 김보현 2017.08.11 2,886
395 KORUS 2017 첨부파일 2017.06.21 김보현 2017.06.21 3,010
394 IMPACT 2016 심포지엄 개최 안내 첨부파일 2016.04.18 관리자 2016.04.18 4,021
393 IMPACT 2015 심포지엄 개최 안내 첨부파일 2015.04.20 서대윤 2015.04.20 2,881
392 2015 중점연구소 성과 전시회 첨부파일 2015.03.31 김형규 2015.03.31 2,473
처음이전1 2 3 4 5 6 7 8 9 10 다음 마지막