0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

Study identifies possible mechanism for brain damage in Huntington's disease

  • 작성자한진
  • 작성일2006-10-10 13:22:24
  • 조회수2386
  • 첨부파일첨부파일
Mutant huntingtin protein may block production of factor key to energy metabolism Researchers from the MassGeneral Institute for Neurodegenerative Disease (MIND) have identified a possible mechanism underlying how the gene mutation that causes Huntington's disease (HD) leads to the degeneration and death of brain cells. In the Oct. 6 issue of Cell, they show that the abnormal form of the huntingtin protein, the product of the HD gene mutation, interferes with the production of a protein critical to cellular energy metabolism. The discovery is the first to bring together two processes believed to be involved in the pathology of HD – the conversion of genetic information into proteins and the production of energy within cells. "Our study indicates that these two pathogenic mechanisms are linked, in that disruption of gene transcription by mutant huntingtin leads to abnormal energy metabolism, which affects energy-dependent cellular processes and results in neurodegeneration," says Dimitri Krainc, MD, PhD, of MIND and the MGH Department of Neurology, who led the research team. "The role of mitochondria [subcellular structures that produce the cells' energy] in the process of nerve cell dysfunction and death is an emerging theme in neurodegenerative disorders, but the mechanism behind HD has been elusive." HD causes the degeneration and death of cells in the basal ganglia – an area deep within the brain – particularly in a structure called the striatum. Although the precise function of the huntingtin protein is still unknown, recent studies have suggested that the mutant form directly interferes with transcription of neuronal genes. Evidence also has pointed to disruptions in cellular energy metabolism as key factors in HD. As a result, the MIND team focused on a protein called PGC-1a, which is known to regulate energy in cells throughout the body. Their previous research had shown that mice in which the PGC-1a gene had been knocked out developed brain lesions in the striatum. To investigate the possible effect of the HD mutation on PGC-1a, the researchers first examined brain tissue samples from presymptomatic HD patients and found that levels of the protein were significantly reduced in the portion of the striatum first affected by the disorder. Examination of the brains of PGC-1a knockout mice found decreased activity in metabolic pathways known to be involved in mitochondrial function – pathways also downregulated in human HD – and brain samples from HD patients also showed reduced expression of mitochondrial genes. Within the striatum HD causes degeneration of medium spiny neurons, the most common cells within the structure. The reseachers found that PGC-1a levels in those particular neurons were much lower among mice with the HD mutation than in normal mice. In contrast, levels of the protein were dramatically higher in striatal cells not affected by HD, suggesting that PGC-1a may protect against neurodegeneration. Analysis of striatal cells from the HD mice also showed significant underexpression of both PGC-1a and key mitochondrial genes, further linking decreased protein levels with deficits in energy metabolism. Additional experiments indicated that mutant huntingtin interferes with the production of PGC-1a by occupying the regulatory region of the PGC-1a gene and inhibiting its transcription. Delivery of a viral vector expressing PGC-1a into the striatum of mice with the HD mutation resulted in significantly less degeneration of neurons that expressed the injected PGC-1a than of other striatal cells, suggesting that it may be possible to restore the protein's protective effects. "Our work provides specific, mechanistic evidence that energy deficits contribute to neuro-degeneration in HD and suggests that enhancing energy production in the brain may be neuroprotective. We are beginning to search for new compounds that could correct PGC-1a dysregulation and potentially reverse the disruption of energy metabolism in HD," says Krainc, who is an assistant professor of Neurology at Harvard Medical School. ### Co-authors of the Cell paper are lead author Libin Cui, PhD, Hyunkyung Jeong, MS, and Fran Borovecki, MD, PhD, of MGH Neurology; and Christopher Parkhurst and Naoko Tanese, PhD, of New York University School of Medicine. The research was supported by grants from the National Institutes of Health and a Fulbright fellowship. Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of nearly $500 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, transplantation biology and photomedicine. MGH and Brigham and Women's Hospital are founding members of Partners HealthCare HealthCare System, a Boston-based integrated health care delivery system.
Total406 [ page1/28 ]
No. 제목 작성자 작성일 조회수
406 한진, 김형규, 염재범 교수님과 함께한 2024 Spring Congress on Lipid and Atherosclerosis of KSOLA 춘계 학술대회 수상 2건 2024.04.18 작성자 2024.04.18 4
405 인제대 의과대학 김형규 교수, 생리학 분야 최고 학술상 수상 2023.11.09 관리자 2023.11.09 49
404 인제대, 과기정통부 ‘2023년도 기초연구실 지원사업’ 선정 2023.09.13 관리자 (web_admin) 2023.09.13 87
403 인제대 교수팀 '돌연사 주범 심부전 원인 규명' 2023.09.13 관리자 (web_admin) 2023.09.13 73
402 2022학년도 인제학술상 수상자 선정 결과 2023.01.05 관리자 2023.01.05 111
401 안전관리 우수연구실 인증 취득 2023.01.05 관리자 2023.01.05 65
400 한진교수 화의자의학상 수상 2023.01.05 관리자 2023.01.05 129
399 이온통로 학회 -Amy 포스터상 수상 2019.01.15 김형규 2019.01.15 2,603
398 센터 겸임교수 조성우 교수 - 한빛사 -JACC Vascular Imaging 2018.12.08 김형규 2018.12.08 2,816
397 2017 IMPACT Symposium 개최 첨부파일 2017.10.31 김보현 2017.10.31 2,603
396 경암바이오유스 2017 첨부파일 2017.08.11 김보현 2017.08.11 2,886
395 KORUS 2017 첨부파일 2017.06.21 김보현 2017.06.21 3,010
394 IMPACT 2016 심포지엄 개최 안내 첨부파일 2016.04.18 관리자 2016.04.18 4,021
393 IMPACT 2015 심포지엄 개최 안내 첨부파일 2015.04.20 서대윤 2015.04.20 2,881
392 2015 중점연구소 성과 전시회 첨부파일 2015.03.31 김형규 2015.03.31 2,473
처음이전1 2 3 4 5 6 7 8 9 10 다음 마지막