0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

PGC-1 alpha implicated in Huntington's disease neurodegeneration

  • 작성자한진
  • 작성일2006-10-22 22:06:10
  • 조회수5091
  • 첨부파일첨부파일
A metabolic disorder underlies the brain effects found in those with Huntington's disease, researchers report in an advance article publishing online October 19, 2006. The article will appear in the November 2006 issue of the journal Cell Metabolism, published by Cell Press. Their new evidence ties a metabolic defect to the loss of neurons in the striatum, the brain's "movement control" region. That neurodegeneration leads to the uncontrollable "dance-like" movements characteristic of the fatal, genetic disorder. The findings may help to explain other symptoms of the disease, including weight loss, and could point to new avenues for therapy, according to the researchers. "Huntington's has been thought of primarily as a neurological disease," said Albert R. La Spada of the University of Washington, Seattle. "Our findings underscore the fact that the condition includes other, underrecognized aspects." The findings in Huntington's disease further highlight the possibility that other neurological conditions might also have a strong metabolic component, La Spada added. Huntington's is relentlessly progressive, the researchers said, as patients succumb to the disease 10 to 25 years after its onset. The disease is caused by a genetic defect in which a repetitive sequence of DNA in the "huntingtin" (htt) gene gets expanded to encode an abnormally elongated protein. Although the mutant htt protein is widely present, only certain populations of neurons degenerate and only a subset of other cell types are affected, they said. And exactly how the htt protein causes disease has remained uncertain. The researchers made their current discovery after stumbling onto evidence that mice with Huntington's disease suffer extremely low body temperatures that worsen as the disease progresses. "These mice have been around for at least a decade," La Spada said. "They have been the subjects of dozens, if not hundreds, of studies, but no one had checked one of their most basic vital signs. "When you do, you find that the mice have a dramatic abnormality in temperature--which is normally tightly regulated." Early on, the animals' temperature registered one or two degrees below normal, La Spada said. As their condition worsened, body temperatures fell substantially, he added, sometimes below 30?C. Like humans, the normal body temperature of mice is about 37?C. To trace the causes of the animals' hypothermia, the researchers first looked to the brain region that controls body temperature. The animals brains, however, appeared to register and respond to cold normally. The problem, they found, lay instead in fat cells known as brown adipose tissue (BAT). In rodents, BAT is the primary tissue that controls body temperature. When the brain signals that the body is cold, the gene called PGC-1 alpha increases production of a protein in BAT that leads the cellular powerhouses known as mitochondria to generate heat instead of energy. In the BAT of hypothermic Huntington's mice, PGC-1 alpha levels rose but failed to elicit the other events required to maintain normal body temperature, they found. The link to mitochondria-regulating PGC-1 alpha led the team back to the brain, and specifically to the striatum. That brain region is most affected in Huntington's disease and is particularly sensitive to mitochondrial dysfunction. The researchers found that tissue taken from striatums of Huntington's disease patients and mice showed reduced activity of genes controlled by PGC-1 alpha. They further found reduced mitochondrial function in the brains of Huntington's mice. The findings suggest a link between two theories to explain Huntington's disease, the researchers said. The earlier finding that the striatum is particularly sensitive to mitochondrial dysfunction suggested that the cellular powerhouses might play a role in the disease. Other evidence suggested that mutant htt might interfere with "transcription factors" that control gene activity. "PGC-1 alpha transcription interference may provide a link between transcription dysregulation and mitochondrial dysfunction in Huntington's disease," the researchers said. "More importantly, our study underscores an emerging role for metabolic and mitochondrial abnormalities in neurodegenerative disease." As metabolic function generally diminishes in older people, such a connection might explain why many neurodegenerative diseases--such as Lou Gehrig's, Alzheimer's, and Parkinson's diseases, for example--tend to emerge and worsen with age, La Spada said.
Total406 [ page1/28 ]
No. 제목 작성자 작성일 조회수
406 한진, 김형규, 염재범 교수님과 함께한 2024 Spring Congress on Lipid and Atherosclerosis of KSOLA 춘계 학술대회 수상 2건 2024.04.18 작성자 2024.04.18 2
405 인제대 의과대학 김형규 교수, 생리학 분야 최고 학술상 수상 2023.11.09 관리자 2023.11.09 49
404 인제대, 과기정통부 ‘2023년도 기초연구실 지원사업’ 선정 2023.09.13 관리자 (web_admin) 2023.09.13 86
403 인제대 교수팀 '돌연사 주범 심부전 원인 규명' 2023.09.13 관리자 (web_admin) 2023.09.13 73
402 2022학년도 인제학술상 수상자 선정 결과 2023.01.05 관리자 2023.01.05 111
401 안전관리 우수연구실 인증 취득 2023.01.05 관리자 2023.01.05 65
400 한진교수 화의자의학상 수상 2023.01.05 관리자 2023.01.05 127
399 이온통로 학회 -Amy 포스터상 수상 2019.01.15 김형규 2019.01.15 2,603
398 센터 겸임교수 조성우 교수 - 한빛사 -JACC Vascular Imaging 2018.12.08 김형규 2018.12.08 2,816
397 2017 IMPACT Symposium 개최 첨부파일 2017.10.31 김보현 2017.10.31 2,603
396 경암바이오유스 2017 첨부파일 2017.08.11 김보현 2017.08.11 2,886
395 KORUS 2017 첨부파일 2017.06.21 김보현 2017.06.21 3,009
394 IMPACT 2016 심포지엄 개최 안내 첨부파일 2016.04.18 관리자 2016.04.18 4,021
393 IMPACT 2015 심포지엄 개최 안내 첨부파일 2015.04.20 서대윤 2015.04.20 2,881
392 2015 중점연구소 성과 전시회 첨부파일 2015.03.31 김형규 2015.03.31 2,473
처음이전1 2 3 4 5 6 7 8 9 10 다음 마지막