0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

Am J Physiol 논문 출간되었습니다. 축하합니다.

  • 작성자한진
  • 작성일2006-04-08 23:55:44
  • 조회수2291
Nitric oxide-cGMP-protein kinase G signaling pathway induces anoxic preconditioning through activation of ATP-sensitive K+ channels in rat hearts Dang Van Cuong,1,* Nari Kim,1,* Jae Boum Youm,1 Hyun Joo,1 Mohamad Warda,1 Jae-Wha Lee,2 Won Sun Park,1 Taeho Kim,1 Sunghyun Kang,1 Hyungkyu Kim,1 and Jin Han1 1Mitochondrial Signaling Laboratory, Department of Physiology and Biophysics, College of Medicine, Cardiovascular and Metabolic Disease Center, Biohealth Products Research Center, Inje University; and 2Department of Pharmaceutical Engineering, Silla University, Busan, Korea Submitted 21 July 2005 ; accepted in final form 30 November 2005 Nitric oxide (NO) plays an important role in anoxic preconditioning to protect the heart against ischemia-reperfusion injuries. The present work was performed to study better the NO-cGMP-protein kinase G (PKG) signaling pathway in the activation of both sarcolemmal and mitochondrial ATP-sensitive K+ (KATP) channels during anoxic preconditioning (APC) and final influence on reducing anoxia-reperfusion (A/R)-induced cardiac damage in rat hearts. The upstream regulating elements controlling NO-cGMP-PKG signal-induced KATP channel opening that leads to cardioprotection were investigated. The involvement of both inducible and endothelial NO synthases (iNOS and eNOS) in the progression of this signaling pathway was followed. Final cellular outcomes of ischemia-induced injury after different preconditioning in the form of lactate dehydrogenase release, DNA strand breaks, and malondialdehyde formation as indexes of cell injury and lipid peroxidation, respectively, were investigated. The lactate dehydrogenase and malondialdehyde values decreased in the groups that underwent preconditioning periods with specific mitochondrial KATP channels opener diazoxide (100 µM), nonspecific mitochondrial KATP channels opener pinacidil (50 µM), S-nitroso-N-acetylpenicillamine (SNAP, 300 µM), or -phenyl-1,N2-etheno-8-bromoguanosine-3',5'-cyclicmonophosphorothioate, Sp-isomer (10 µM) before the A/R period. Preconditioning with SNAP significantly reduced the DNA damage. The effect was blocked by glibenclamide (50 µM), 5-hydroxydecanoate (100 µM), NG-nitro-L-arginine methyl ester (200 µM), and -phenyl-1,N2-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothioate, Rp-isomer (1 µM). The results suggest iNOS, rather than eNOS, as the major contributing NO synthase during APC treatment. Moreover, the PKG shows priority over NO as the upstream regulator of NO-cGMP-PKG signal-induced KATP channel opening that leads to cardioprotection during APC treatment.
Total405 [ page1/27 ]
No. 제목 작성자 작성일 조회수
405 인제대 의과대학 김형규 교수, 생리학 분야 최고 학술상 수상 2023.11.09 관리자 2023.11.09 44
404 인제대, 과기정통부 ‘2023년도 기초연구실 지원사업’ 선정 2023.09.13 관리자 (web_admin) 2023.09.13 81
403 인제대 교수팀 '돌연사 주범 심부전 원인 규명' 2023.09.13 관리자 (web_admin) 2023.09.13 70
402 2022학년도 인제학술상 수상자 선정 결과 2023.01.05 관리자 2023.01.05 107
401 안전관리 우수연구실 인증 취득 2023.01.05 관리자 2023.01.05 62
400 한진교수 화의자의학상 수상 2023.01.05 관리자 2023.01.05 120
399 이온통로 학회 -Amy 포스터상 수상 2019.01.15 김형규 2019.01.15 2,602
398 센터 겸임교수 조성우 교수 - 한빛사 -JACC Vascular Imaging 2018.12.08 김형규 2018.12.08 2,815
397 2017 IMPACT Symposium 개최 첨부파일 2017.10.31 김보현 2017.10.31 2,602
396 경암바이오유스 2017 첨부파일 2017.08.11 김보현 2017.08.11 2,885
395 KORUS 2017 첨부파일 2017.06.21 김보현 2017.06.21 3,005
394 IMPACT 2016 심포지엄 개최 안내 첨부파일 2016.04.18 관리자 2016.04.18 4,019
393 IMPACT 2015 심포지엄 개최 안내 첨부파일 2015.04.20 서대윤 2015.04.20 2,880
392 2015 중점연구소 성과 전시회 첨부파일 2015.03.31 김형규 2015.03.31 2,472
391 Best Miso Award - 한진 2014.11.04 이정훈 2014.11.04 2,081
처음이전1 2 3 4 5 6 7 8 9 10 다음 마지막