0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

How brain cells die in patients with Alzheimer's Disease

  • 작성자한진
  • 작성일2006-03-19 19:40:48
  • 조회수1913
  • 첨부파일첨부파일
Researchers at Children's Hospital & Research Center at Oakland (CHRCO) have published a new study that is the first to explain how brain cells die in patients with Alzheimer's Disease. This discovery is an important first step to helping researchers devise ways to slow, prevent and eventually cure a disease that affects an estimated 4.5 million Americans. In a study published in the February 28th issue of the Proceedings of the National Academy of Sciences, lead scientist Hani Atamna, Ph.D., found that alterations in the production of heme (a molecule that contains iron) may be the key to understanding why excessive amyloid-beta is toxic to brain cells. Dr. Atamna had previously discovered that Alzheimer's patients have abnormal amounts of heme in their brains. In new research results, Atamna's team showed that amyloid-beta readily binds with heme to form a compound that can be flushed from cells. When there is insufficient heme or too much amyloid-beta, however, the amyloid-beta forms large toxic "clumps" that the cell cannot dissolve and eliminate. Though heme binding with amyloid-beta can be beneficial, if too much heme is bound up with amyloid-beta, there may be insufficient heme available for the cell to properly function. When this happens, the cell's mitochondria, which are the tiny structures inside brain cells that produce the energy the cells need to function, begin to decay. Dr. Atamna refers to this phenomenon as a "functional heme deficiency" because the cells are still forming heme, but it is trapped within an amyloid-beta/heme compound. When they examined the heme/ amyloid-beta compound researchers in the Atamna laboratory were surprised to discover it was a peroxidase--a type of enzyme that reacts harmfully with biological materials essential for proper brain function such as serotonin and L-DOPA. Dr. Atamna believes that the combination of functional heme deficiency, which harms mitochondria needed to produce energy, together with the increase in oxidative damage caused by the peroxidase, is what eventually kills the cell. "Until now, we didn't understand all the factors that trigger Alzheimer's disease. The discovery of the formation of amyloid-beta peroxidase provides a clear picture of why cells die in the brain of Alzheimer's patients. Our next challenge is to develop drugs that directly and selectively target the excessive peroxidase of amyloid-beta, which could lead to the first significant therapy for Alzheimer's disease." http://www.childrenshospitaloakland.org
Total406 [ page12/28 ]
No. 제목 작성자 작성일 조회수
241 Mitochondrial Damage Impairs Oxygen Metabolism After Intracerebral Hemorrhage 2007.01.11 한진 2007.01.11 2,141
240 Weight Loss Improves Heart Rate Recovery in Overweight and Obese Men With Features of the Metabolic Syndrome 2007.01.11 한진 2007.01.11 2,128
239 Metabolic Syndrome Independently Predicts Vascular Complications in Diabetes 2007.01.11 한진 2007.01.11 1,925
238 Metabolic Syndrome Helps Predict Cardiovascular Disease and Diabetes Risk 2007.01.11 한진 2007.01.11 4,116
237 미토콘드리아 DNA의 복제 첨부파일 2007.01.10 한진 2007.01.10 3,232
236 미토콘드리아에 관심 집중 2007.01.10 한진 2007.01.10 2,177
235 미토콘드리아 산화 스트레스로 인한 파킨슨병 기전 동정 2007.01.10 한진 2007.01.10 2,730
234 미토콘드리아 이동 변화에 따른 신경세포 기능 이상 동정 2007.01.10 한진 2007.01.10 2,170
233 세포의 기능에 영향을 주는 미토콘드리아 DNA 발견 2007.01.10 한진 2007.01.10 2,817
232 미토콘드리아 DNA조절 부위 변이가 알츠하이머병과 연관 2007.01.10 한진 2007.01.10 4,206
231 미토콘드리아 돌연변이가 혈압 및 콜레스테롤 이상과 관련 2007.01.10 한진 2007.01.10 2,371
230 암세포의 아킬레스腱은 미토콘드리아 2007.01.10 한진 2007.01.10 2,064
229 Inadequate cytoplasmic antioxidant enzymes response contributes to the oxidative stress in human hypertension. 2007.01.06 한진 2007.01.06 3,717
228 A comparison of arteries and veins in oxidative stress: producers, destroyers, function, and disease. 2007.01.06 한진 2007.01.06 2,198
227 Uncoupling protein-3: clues in an ongoing mitochondrial mystery. 2007.01.06 한진 2007.01.06 2,508
처음 이전 11 12 13 14 15 16 17 18 19 20 다음 마지막