0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

Enzyme could help prevent mitochondria-related diseases

  • 작성자한진
  • 작성일2005-03-01 21:52:22
  • 조회수2115
  • 첨부파일첨부파일
Enzyme could help prevent mitochondria-related diseases. The Dallas Morning News (via Knight-Ridder/Tribune News Service); 2/7/2005 Byline: Sue Goetinck Ambrose DALLAS _ Shut down a power plant, and a city suffers. Shut down the body's power plants, and the body suffers. Scientists have discovered a power plant protector, a finding that could one day help thwart diseases caused by problems with energy production in the body. Trouble in the body's power plants _ tiny structures called mitochondria tucked inside cells _ has been linked to cardiovascular disease, neurological disorders, diabetes and symptoms of aging. Inherited mutations in genes housed inside mitochondria also cause diseases that can affect muscles, vision and other body functions. So scientists are keen on figuring out how cells protect these mitochondrial genes, which are central to energy production. In Friday's issue of the journal Science, researchers from the University of Texas Southwestern Medical Center at Dallas report on an enzyme that appears to coat and protect the genes. Studies like these will be crucial for scientists to treat diseases that are caused by problems with mitochondria, said Gerald Shadel, a molecular biologist at Yale University in New Haven, Conn., familiar with the work "It's grossly underestimated, the effect that dysfunction of mitochondria have on human health," he said. "Understanding that is going to be very, very important." In the new research, a team of scientists led by UT Southwestern molecular biologist Ronald Butow studied mitochondria in yeast, one-celled fungi that are nevertheless quite similar to cells in the human body. Mitochondria in all species contain genes (made of the chemical DNA) that help make key components in the cell's energy production line. Curious as to how cells protect these all-important genes, Dr. Butow and his colleagues examined mitochondrial DNA from yeast to see what was at work. The scientists uncovered more than 20 different proteins coating the DNA. Several of the proteins were already known as enzymes that work in the mitochondria to produce energy. Dr. Butow's team focused on one of them, an enzyme called aconitase. Experiments showed that yeast that were genetically altered so they couldn't produce aconitase didn't pass on mitochondria properly as the cells divided. After a series of divisions, the mitochondria disappeared altogether. Dr. Butow believes that's because aconitase wasn't there to protect the DNA. "What's clear is you've got to keep mitochondrial DNA happy and make sure it's inherited properly as cells divide so they can keep making energy," Dr. Butow said. Understanding how cells protect their mitochondrial DNA so that it can be passed on to newly formed cells could be important in treating diseases caused by mutations in that DNA, Butow said. Each cell in the body can house up to 1,000 mitochondria, each with a copy of mitochondrial DNA. Scientists have found that people who carry mutations in mitochondrial DNA often also have non-mutated copies. The higher the proportion of mutated copies, the worse the symptoms usually are. "This is a problem of how DNA is parceled out," Butow said. If a patient's cells would pass on mostly normal mitochondrial DNA with each new round of cell division, symptoms would be milder. If mutant mitochondrial DNA gets passed on, symptoms are more severe. An understanding of how aconitase, and probably other factors, help mitochondrial DNA get passed on to newly formed cells might give scientists new ideas for treating disease or symptoms of aging. ___ (c) 2005, The Dallas Morning News. Visit The Dallas Morning News on the World Wide Web at http://www.dallasnews.com/ Distributed by Knight Ridder/Tribune Information Services. For information on republishing this content, contact us at (800) 661-2511 (U.S.), (213) 237-4914 (worldwide), fax (213) 237-6515, or e-mail reprints@krtinfo.com. COPYRIGHT 2005 The Dallas Morning News
Total406 [ page24/28 ]
No. 제목 작성자 작성일 조회수
61 High glucose inhibits apoptosis induced by serum deprivation in vascular smooth muscle cells via upregulation of Bcl-2 and Bcl-xl.(Complications) 2005.03.01 한진 2005.03.01 2,797
60 Every living species to be given a `barcode'.(News) 2005.03.01 한진 2005.03.01 1,934
59 CELL BIOLOGY: Popeye's Ribosomes 2005.03.01 한진 2005.03.01 1,877
58 Food Ingredients May Be As Effective As Antidepressants; Harvard-Affiliated Researchers Discover 'Mood Foods' Relieve Signs of Depression. 2005.03.01 한진 2005.03.01 2,553
57 DO YOU WANT TO LIVE FOREVER? 2005.03.01 한진 2005.03.01 9,962
56 Some foods just make you happier.(News) 2005.03.01 한진 2005.03.01 1,761
55 Researcher says cancers, other illnesses stem from structures that provide cells energy. 2005.03.01 한진 2005.03.01 3,114
54 Trouble in the Cell's Power Plant 2005.03.01 한진 2005.03.01 2,478
읽는중 Enzyme could help prevent mitochondria-related diseases 2005.03.01 한진 2005.03.01 2,115
52 편두통이 심장질환 발생 위험과 연관 2005.03.01 한진 2005.03.01 1,960
51 미토콘드리아의 단편화와 세포의 사멸 (Nature, 2/17) 2005.02.22 염재범 2005.02.22 2,312
50 COX-2 Inhibitors -- Lessons in Drug Safety 첨부파일 2005.02.16 한진 2005.02.16 1,863
49 COX-2 Inhibitors -- A Lesson in Unexpected Problems 첨부파일 2005.02.16 한진 2005.02.16 2,057
48 심장병 막으려면 이 잘 닦아야!! 2005.02.12 한진 2005.02.12 1,803
47 미토콘드리아를 보호하는 효소 2005.02.12 한진 2005.02.12 2,087
처음 이전 21 22 23 24 25 26 27 28 다음마지막