0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

Researchers identify protein pathway involved in Parkinson disease development

  • 작성자한진
  • 작성일2007-06-25 17:59:34
  • 조회수2530
20.06.2007 Scientists have found a novel signaling pathway in cells that is altered by genetic mutations recently identified in Parkinson disease development. These new findings show how the mutations affect cellular function and could provide a target for drug therapies to treat the disease. The research by a team of Emory University scientists will be published June 18 in the Public Library of Science Biology (PLoS Biology) journal. Anzeige Parkinson disease is a degenerative disorder of the central nervous system resulting from the loss of neurons in the brain that produce dopamine. This lowering of dopamine leads to decreased stimulation of the brain's motor cortex. Although scientists have not known the exact cause of the loss of these dopamine-producing neurons, they believe it is related to dysfunctional mitochondria and oxidative stress. Mitochondria are the cell's "power plants," which metabolize oxygen and generate energy. Oxidative stress is the damage caused to cells by reactive oxygen produced during oxygen metabolism. Although cells have mechanisms in place to protect against oxidative damage, this system can break down in the face of environmental challenges or genetic mutations. The Emory researchers found that the mitochondrial protein PINK1 normally protects cells from oxidative stress and promotes cell survival by regulating function of the protein TRAP1. When PINK1 is mutated, however, the protective TRAP1 pathway is disrupted, leading to mitochondrial damage. Other scientists recently have linked early onset Parkinson disease to mutations in both copies of the PINK1 gene (one from each parent). They also have evidence that single-copy mutations in PINK1 are a significant risk factor for the development of later-onset Parkinson disease. "We now know much more about the effect of PINK1 mutations on the mitochondria and how this novel signaling pathway is disrupted in the development of Parkinson disease," says Lian Li, PhD, associate professor of pharmacology in Emory University School of Medicine and research team leader. "We believe the PINK1 and TRAP1 pathway may be a future target for therapeutic intervention."
Total406 [ page24/28 ]
No. 제목 작성자 작성일 조회수
61 High glucose inhibits apoptosis induced by serum deprivation in vascular smooth muscle cells via upregulation of Bcl-2 and Bcl-xl.(Complications) 2005.03.01 한진 2005.03.01 2,796
60 Every living species to be given a `barcode'.(News) 2005.03.01 한진 2005.03.01 1,933
59 CELL BIOLOGY: Popeye's Ribosomes 2005.03.01 한진 2005.03.01 1,876
58 Food Ingredients May Be As Effective As Antidepressants; Harvard-Affiliated Researchers Discover 'Mood Foods' Relieve Signs of Depression. 2005.03.01 한진 2005.03.01 2,552
57 DO YOU WANT TO LIVE FOREVER? 2005.03.01 한진 2005.03.01 9,962
56 Some foods just make you happier.(News) 2005.03.01 한진 2005.03.01 1,761
55 Researcher says cancers, other illnesses stem from structures that provide cells energy. 2005.03.01 한진 2005.03.01 3,114
54 Trouble in the Cell's Power Plant 2005.03.01 한진 2005.03.01 2,478
53 Enzyme could help prevent mitochondria-related diseases 2005.03.01 한진 2005.03.01 2,115
52 편두통이 심장질환 발생 위험과 연관 2005.03.01 한진 2005.03.01 1,960
51 미토콘드리아의 단편화와 세포의 사멸 (Nature, 2/17) 2005.02.22 염재범 2005.02.22 2,312
50 COX-2 Inhibitors -- Lessons in Drug Safety 첨부파일 2005.02.16 한진 2005.02.16 1,863
49 COX-2 Inhibitors -- A Lesson in Unexpected Problems 첨부파일 2005.02.16 한진 2005.02.16 2,057
48 심장병 막으려면 이 잘 닦아야!! 2005.02.12 한진 2005.02.12 1,803
47 미토콘드리아를 보호하는 효소 2005.02.12 한진 2005.02.12 2,087
처음 이전 21 22 23 24 25 26 27 28 다음마지막