Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

Researchers find molecular 'brake' to cell death

  • 작성자한진
  • 작성일2006-08-02 11:08:13
  • 조회수2732
  • 첨부파일첨부파일
Discovery could yield new target for future therapies HOUSTON - Researchers at The University of Texas M. D. Anderson Cancer Center have significantly refined the scientific understanding of how a cell begins the process of self-destruction - an advance they say may help in the design of more targeted cancer therapies. In the June 30 issue of the journal Cell, the research team found that a natural "brake" exists in a cell to prevent it from undergoing apoptosis, or programmed cell death, and they say that optimal anti-cancer therapies should take a two-pronged approach to overriding this brake in order to force a tumor cell to die. Very few drugs do this now, they say. The discovery "demonstrates that apoptosis is more complicated than had been believed, and consequently harder to achieve," says the study's lead author, Dean G. Tang, Ph.D., associate professor in the Department of Carcinogenesis in the Science Park Research Division of M. D. Anderson in Smithville, Texas. Apoptosis can occur when a cell has reached its lifespan, and so is "programmed" to die, or is initiated when a cell is damaged beyond repair or infected by a virus. Apoptosis is rare in cancer because tumor cells have adapted biological pathways to circumvent cell death, so many anti-cancer therapies focus on inducing apoptosis in these cells, Tang says. But the notion of how to push cancer cells to die has been flawed, Tang says. These new findings "overturn a scientific dogma so long accepted that it has become a textbook standard when talking about apoptosis," he continues. Researchers agree that the seminal event that leads to initiation of apoptosis is the release of a key protein known as cytochrome c (CC) from a cell's mitochondria, the organelle's energy storehouse. These molecules then bind to another protein called Apaf-1 in the cell cytoplasm, and together they form a scaffolding "death wheel" to activate enzymes called caspases that shred a cell apart. But what they also believed is that a cell needs extra energy from ATP to undergo apoptosis, and that this extra energy was produced from the "pools" of free nucleotides that exist in the cell cytoplasm. Nucleotides are the primary structural chemical units that make up DNA, RNA and proteins, and they combine to play a variety of roles in the cell, such as formation of ATP. However, through a series of biological and biochemical experiments, Tang and his research team found that adding ATP to a cancer cell could potentially impede apoptosis. They discovered that these nucleotide pools, in fact, act not to promote apoptosis through production of ATP, but to hinder it. They are "pro-survival factors" that prevent CC, when released from the mitochondria, from "seeing" Apaf-1 in the cytoplasm, Tang says. "When we induced some cell stress and damage, the low levels of CC that came out from the mitochondria were ineffective because they are sequestered by an ocean of free nucleotides and ATP," he says. "No one had ever realized this kind of barrier existed to impede apoptosis." They found that cell mitochondria needed to release a large and sustained volume of CC to overcome this nucleotide barrier, and they also found evidence that as soon as the release of CC increases, another mechanism kicks in that simultaneously begins to reduce the size of the nucleotide pool to allow CC to bind to Apaf-1, Tang says. The researchers say this kind of strategy makes sense for the cell, because it acts like a biological fail-safe system to protect against the errant release of CC from malfunctioning mitochondria. A large pool of free nucleotides along with complete ATP molecules normally exists in a healthy cell so that just a little CC could not mistakenly push the cell to self destruct, Tang says. "When CC is still limited in the cell, perhaps through an accidental release, the nucleotide pool will neutralize the CC so that the cell can stay alive," he says. "So, in a way, it takes a large amount of CC to convince the cell that the damage is real, and that is what you see when cardiac cells die after a heart attack, for example." This finding has direct implications for anti-cancer therapy, Tang says, suggesting how current therapy could be both inefficient and lead to resistance in a cell. "Many cancer drugs focus on pushing the mitochondria to release CC, and not on reducing the nucleotide pool, and our new model suggests that decreasing this pool is essential to produce sensitivity in cancer cells to apoptosis," Tang says. Cancers that quickly become resistant to therapy, such as melanoma and ovarian tumors, do so because they have found ways to prevent mitochondria from releasing a lot of CC, he says. Tumor cells also don't want to decrease their nucleotide pool, because they need ATP for continued functioning, he says. "An optimal cancer therapy should combine both strategies," Tang says. "They should maximize release of CC and maximize the decrease of nucleotide levels." Some chemotherapy drugs, like paclitaxel, cisplatin and etoposide, appear, coincidentally and perhaps inadvertently, to do both, and are very effective for specific cancers, he says. "But based on these new findings, we now have a new theoretical approach that can be used to help in the design of more targeted chemotherapy drugs," Tang says. "This will change the way that scientists now think about the role of nucleotides in cancer therapy." ### The study was funded by grants from the National Institutes of Health, the American Cancer Society, Department of Defense, and the American Heart Association. Co-authors from the study include M. D. Anderson researchers Dhyan Chandra, Ph.D., Mary Ayres, Ph.D., and Varsha Gandhi, Ph.D.; Shawn B. Bratton, Ph.D., and Maria D. Person, Ph.D., from the University of Texas at Austin; Yanan Tian, Ph.D., from Texas A&M University; and Angel G. Martin, Ph.D., and Howard O. Fearnhead, Ph.D., from the National Cancer Institute.
Total405 [ page27/27 ]
No. 제목 작성자 작성일 조회수
15 프로테오믹스 연구의 최신동향과 활용 첨부파일 2005.01.25 주현 2005.01.25 2,019
14 연구와 마켓 - nanobiotechnmologes applications, 마켓 그리고 회사들 2005.01.25 이현숙 2005.01.25 1,997
13 스웨덴 과학자들이 부분적으로 노화의 미스테리를 풀었다. 2005.01.25 이현숙 2005.01.25 2,117
12 STKE : the mitochondria으로부터의 칼슘 신호전달 2005.01.25 이현숙 2005.01.25 2,435
11 drug의 힘 2005.01.25 이현숙 2005.01.25 2,033
10 MFIC의 microfluidizer procesor는 thechnion에서 Mitochondrial 연구를 운행한다. 2005.01.25 이현숙 2005.01.25 3,043
9 Primagen은 과학적인 연구 사용을 위한 Retina Mitox Mitochondrial(TM) DNA Blood Test로 진단하는 탐색법을 제공한다. 2005.01.25 이현숙 2005.01.25 2,080
8 노화에서 유전자 손상의 중요 인자 첨부파일 2005.01.25 김현주 2005.01.25 1,706
7 미토콘드리아와 장수 첨부파일 2005.01.25 김현주 2005.01.25 1,738
6 미토콘드리아와 당뇨병의 관계 첨부파일 2005.01.25 김현주 2005.01.25 1,693
5 새로운 과학 분야는 세상에서 가장 치명적인 퇴행성 질환의 치료에 주력하고 있다. 첨부파일 2005.01.25 김현주 2005.01.25 1,815
4 apoptosis에 있어서 세포의 mitochondria의 역할 첨부파일 2005.01.25 이영숙 2005.01.25 2,810
3 mitochondrial DNA mutation이 혈압과 콜레스테롤 수치에 직접적으로 영향을 미친다. 2005.01.25 이영숙 2005.01.25 2,516
2 미토콘드리아 DNA변이와 노호의 관계 2005.01.25 이영숙 2005.01.25 1,949
1 bipolar disorder (BD: 양극성장애)과 mitochondria의 관계 2005.01.25 이영숙 2005.01.25 2,311
처음 이전 21 22 23 24 25 26 27 다음마지막