0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

Toxic Chemical Saqrin Damages Genes That Control Brain, Nervous System

  • 작성자한진
  • 작성일2006-03-19 19:43:14
  • 조회수5616
  • 첨부파일첨부파일
3/17/2006 Durham, NC - A toxic chemical called sarin that is often used in chemical warfare inflicts widespread damage to genes that control memory, thinking, mood, muscle control and a range of other brain functions, a new animal study has shown. The study could explain many of the physical ailments people experience following sarin exposure, said the researchers from Duke University Medical Center. Such exposures have occurred through on-the-job use with insecticide analogues in the agriculture industry, during the Persian Gulf War, and in the 1995 Tokyo subway terrorist attack. "We have witnessed and catalogued the severe symptoms that victims of sarin exposure have experienced, and we have studied the severe damage sarin imposes on brain cells," said Mohamed Abou Donia, M.D., Duke pharmacologist and senior author of the study. "Now, we have evidence that implicates the specific genes that are damaged when one is exposed to sarin." Abou Donia said the results of the study could ultimately lead to a blood test for sarin exposure and could identify potential genes to target with new therapies that ameliorate the damage. He also said the results further emphasize that sarin should be handled with extreme care and used only by professionals with appropriate protective gear. Results of the study, funded by the Department of Defense, are published in the March 15, 2006, issue of the journal Biochemical Pharmacology. Other members of the Duke team include T.V. Damodaran, Ph.D., Holly K. Dressman, Ph.D., and Simon M. Lin, Ph.D. Abou Donia's team used gene profiling techniques to examine the effects of sarin on all known genes related to brain and nervous system function. Within 15 minutes of a single exposure to sarin, 65 different genes in the brains of rats showed altered expression, meaning their protein levels either increased or decreased. Three months later, expression of a total of 38 genes remained altered. The study time point of three months in rats is the equivalent to 20 years in humans, demonstrating that the effects of sarin are widespread and long-lasting, he said. "Early reports indicate that some individuals exposed to low levels of sarin during the Tokyo attack suffered persistent neurological and psychiatric abnormalities for more than five years after exposure," said Abou- Donia. "In addition, many of the Gulf War veterans were exposed to low-level sarin during destruction of the enemy's chemical arsenal, and a percentage of them have continued to complain of chronic fatigue, muscle and joint pain, weakness, headaches, loss of concentration, forgetfulness, and irritability. "Our new findings confirm that the duration of sarin exposure can continue for years or even decades after the initial exposure because it alters gene expression of proteins critical to brain function," he said. Sarin was developed during World War II as a nerve agent tailor-made to irreversibly inhibit the enzyme acetylcholinesterase. This enzyme's normal role is to halt the signal between a nerve cell and a muscle cell once it has been transmitted. When acetylcholinesterase is inhibited, the nerve signal continues unabated, causing excitability and over-stimulation. This hyper-stimulation initiates the release of additional neurotransmitters that further excite the cells and ultimately cause them to degenerate or die, said Abou Donia. It has long been known that chemicals like sarin - called "organophosphates" because they have a phosphorus atom attached to them - can cause brain cell death in high enough doses, said Abou Donia. Until now, though, global genes affected by sarin have been unidentified, he said. Abou Donia's team identified a primary gene responsible for immediate neuronal cell death following sarin exposure. The gene, Cam Kinase II, is overactivated after sarin exposure, resulting in an influx of calcium into the cell. The calcium migrates to the cell's mitochondria, resulting in the release of reactive oxygen species and ultimately cell suicide, characteristic of long-term, chronic sarin exposure. Mitochondria are the power plants of the cell, generating chemical energy through the breakdown of glucose. The process is among many that occur following sarin exposure, said Abou Donia. In addition, sarin induces changes within: genes that maintain the blood-brain barrier, a membrane that protects the brain from toxic substances; genes that help scavenge reactive oxygen species or "oxygen-free radicals" from inflicting irreparable damage in cells and contributing to the aging process; genes that control programmed cell death, called apoptosis; genes that produce growth hormones and stress hormones; and genes that control the electrophysiology of cells, directly increasing excitability of membranes by blocking peripheral nerve conduction. "We knew that organophosphates inflicted irreparable damage in the brain and nervous system, but now we know how," said Abou Donia. He said the current study results apply to other chemicals classified as organophosphates, including chlorpyrofos and related insecticides. High-level exposures to chemicals in this class have been known to produce a variety of symptoms, such as excessive sweating and salivation, severe tremors, seizures, and convulsions. Long-term exposure to these chemicals results in fatigue, muscle contractions, muscle weakness, memory and cognitive deficits, mood changes, and a host of other nervous system changes, researchers said. In fact, a single high-dose of sarin injected into the muscles of rats caused excessive salivation, severe tremors, seizures, convulsions and, ultimately, death in half of the animals. Animals that received a low dose of sarin did not display the severe symptoms but became inactive, the study showed. Previous studies have shown that low doses result in fewer acute symptoms but more of the chronic, persistent deficits. SOURCE: Duke University
Total406 [ page27/28 ]
No. 제목 작성자 작성일 조회수
16 "old" mice가 노화에서 key로서 작용한다. 2005.01.26 문혜진 2005.01.26 2,078
15 프로테오믹스 연구의 최신동향과 활용 첨부파일 2005.01.25 주현 2005.01.25 2,020
14 연구와 마켓 - nanobiotechnmologes applications, 마켓 그리고 회사들 2005.01.25 이현숙 2005.01.25 1,999
13 스웨덴 과학자들이 부분적으로 노화의 미스테리를 풀었다. 2005.01.25 이현숙 2005.01.25 2,120
12 STKE : the mitochondria으로부터의 칼슘 신호전달 2005.01.25 이현숙 2005.01.25 2,436
11 drug의 힘 2005.01.25 이현숙 2005.01.25 2,034
10 MFIC의 microfluidizer procesor는 thechnion에서 Mitochondrial 연구를 운행한다. 2005.01.25 이현숙 2005.01.25 3,049
9 Primagen은 과학적인 연구 사용을 위한 Retina Mitox Mitochondrial(TM) DNA Blood Test로 진단하는 탐색법을 제공한다. 2005.01.25 이현숙 2005.01.25 2,082
8 노화에서 유전자 손상의 중요 인자 첨부파일 2005.01.25 김현주 2005.01.25 1,706
7 미토콘드리아와 장수 첨부파일 2005.01.25 김현주 2005.01.25 1,740
6 미토콘드리아와 당뇨병의 관계 첨부파일 2005.01.25 김현주 2005.01.25 1,695
5 새로운 과학 분야는 세상에서 가장 치명적인 퇴행성 질환의 치료에 주력하고 있다. 첨부파일 2005.01.25 김현주 2005.01.25 1,819
4 apoptosis에 있어서 세포의 mitochondria의 역할 첨부파일 2005.01.25 이영숙 2005.01.25 2,813
3 mitochondrial DNA mutation이 혈압과 콜레스테롤 수치에 직접적으로 영향을 미친다. 2005.01.25 이영숙 2005.01.25 2,516
2 미토콘드리아 DNA변이와 노호의 관계 2005.01.25 이영숙 2005.01.25 1,951
처음 이전 21 22 23 24 25 26 27 28 다음마지막