0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

Understanding Cell Death May Bring New Life To Kidney Treatment

  • 작성자한진
  • 작성일2006-04-21 20:05:25
  • 조회수2192
  • 첨부파일첨부파일
Finding how two proteins conspire to get kidney cells to self-destruct when oxygen supplies are low may one day improve dismal mortality rates for ischemic renal failure, researchers say. Dehydration, low blood pressure, septic shock, trauma or removing a kidney for transplantation can temporarily halt or reduce blood and oxygen supplies, says Dr. Zheng Dong, cell biologist at the Medical College of Georgia. Ischemia leads to cell suicide or apoptosis, particularly in the energy-consuming tubular cells of the kidneys, he says. Fifty percent mortality rates from resulting ischemic renal failure haven’t changed in nearly as many years, Dr. Dong says. Tubular cells – which have the daunting daily task of reabsorbing nearly 50 gallons of usuable fluid volume, including salt and glucose the kidneys filter from the blood every 24 hours – are particularly vulnerable to apoptosis and injury, Dr. Dong says. “They are highly energy-dependent,” he says. “That is why when you shut off the blood supply, these cells are quickly, irreversibly damaged and they die.” Tubular cell injury and death is why kidneys are so vulnerable, for example in critically ill patients. It’s in this oxygen-deprived environment that two proteins, Bid and Bax – each a known killer in its own right – are activated and may partner to induce cell death. The killing proteins are pervasive, particularly in the kidneys, says Dr. Dong, who recently received a $1 million grant from the National Institute of Diabetes & Digestive & Kidney Diseases, to better understand their role in cell death during ischemic renal failure. In both cell culture and animal models of ischemic renal injury, Dr. Dong and his colleagues have found Bid is cleaved or cut, releasing active fragments. Although he still doesn’t know what cuts Bid, that act enables the protein to move from its usual place in the outer region of the cell to inside its powerhouses or mitochondria. Cleaving results in what Dr. Dong calls truncated Bid or “tBid,” which may interact with Bax and produce a conformational change. “Now Bax can move,” says Dr. Dong, and it also heads straight for the mitochondria, which normally feed and oxygenate cells. Once inside, Bax bits re-collect, forming a complex capable of making a hole in the mitochondria and enabling molecules, such as cytochrome C, a major enabler of cell respiration, to escape. “This process as we have shown probably is mediated by Bax, and now we have found that Bid can be a critical trigger of Bax,” Dr. Dong says. A Bid knockout mouse model, developed at the University of Pittsburgh, helps illustrate the synergism. Without Bid, there is less apoptosis while kidney function and survival rates significantly improve. Also, interestingly, without Bid, cell regeneration that helps the kidney recover from ischemia is slower, he notes. The kidney normally has some capacity to regenerate, with surviving cells quickly stretching to cover holes left by dead cells and later dividing to form more cells for tissue repair. “Within a couple of hours, neighboring cells will stretch to cover the wound, to take up the work of the dying cells,” Dr. Dong says. Unfortunately, while some kidney cells are working hard to make up the loss, Bid and Bax continue to trigger apoptosis and eventually the kidney fails, he says. One goal is finding the protease that cleaves Bid – he doesn’t think it’s Bax – and following the ensuing cascade to better understand the process so it can be manipulated to stop needless cell death or, in the case of cancer, enhance self-destruction. In related research, Dr. Dong’s lab is studying kidney damage caused by the common chemotherapeutic agent, Cisplatin, used for testicular, ovarian and small cell lung cancer, head and neck tumors and more. Renal function is closely monitored while on therapy because of the drug’s known side effects in the kidney. “We want to see how the drug can kill kidney cells and if we can find a protective mechanism to prevent kidney cell death without stopping cancer cell death,” says Dr. Dong. He thinks the answer may be in the differences between healthy and cancerous cells.
Total406 [ page27/28 ]
No. 제목 작성자 작성일 조회수
16 "old" mice가 노화에서 key로서 작용한다. 2005.01.26 문혜진 2005.01.26 2,080
15 프로테오믹스 연구의 최신동향과 활용 첨부파일 2005.01.25 주현 2005.01.25 2,021
14 연구와 마켓 - nanobiotechnmologes applications, 마켓 그리고 회사들 2005.01.25 이현숙 2005.01.25 2,000
13 스웨덴 과학자들이 부분적으로 노화의 미스테리를 풀었다. 2005.01.25 이현숙 2005.01.25 2,121
12 STKE : the mitochondria으로부터의 칼슘 신호전달 2005.01.25 이현숙 2005.01.25 2,436
11 drug의 힘 2005.01.25 이현숙 2005.01.25 2,034
10 MFIC의 microfluidizer procesor는 thechnion에서 Mitochondrial 연구를 운행한다. 2005.01.25 이현숙 2005.01.25 3,049
9 Primagen은 과학적인 연구 사용을 위한 Retina Mitox Mitochondrial(TM) DNA Blood Test로 진단하는 탐색법을 제공한다. 2005.01.25 이현숙 2005.01.25 2,082
8 노화에서 유전자 손상의 중요 인자 첨부파일 2005.01.25 김현주 2005.01.25 1,707
7 미토콘드리아와 장수 첨부파일 2005.01.25 김현주 2005.01.25 1,740
6 미토콘드리아와 당뇨병의 관계 첨부파일 2005.01.25 김현주 2005.01.25 1,695
5 새로운 과학 분야는 세상에서 가장 치명적인 퇴행성 질환의 치료에 주력하고 있다. 첨부파일 2005.01.25 김현주 2005.01.25 1,819
4 apoptosis에 있어서 세포의 mitochondria의 역할 첨부파일 2005.01.25 이영숙 2005.01.25 2,814
3 mitochondrial DNA mutation이 혈압과 콜레스테롤 수치에 직접적으로 영향을 미친다. 2005.01.25 이영숙 2005.01.25 2,516
2 미토콘드리아 DNA변이와 노호의 관계 2005.01.25 이영숙 2005.01.25 1,951
처음 이전 21 22 23 24 25 26 27 28 다음마지막