0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

와우!! 축하합니다. 염재범 선생님 논문 2편이 출판되었습니다.

  • 작성자한진
  • 작성일2006-04-14 02:02:29
  • 조회수2588
  • 첨부파일첨부파일
Philos Transact A Math Phys Eng Sci. 2006 May 15;364(1842):1135-54. A mathematical model of pacemaker activity recorded from mouse small intestine. Youm JB, Kim N, Han J, Kim E, Joo H, Leem CH, Goto G, Noma A, Earm YE. College of Medicine, 2020 Cardiovascular Institute, Inje University Mitochondrial Signaling Laboratory, Department of Physiology and Biophysics Busan 614-735, South Korea. The pacemaker activity of interstitial cells of Cajal (ICCs) has been known to initiate the propagation of slow waves along the whole gastrointestinal tract through spontaneous and repetitive generation of action potentials. We studied the mechanism of the pacemaker activity of ICCs in the mouse small intestine and tested it using a mathematical model. The model includes ion channels, exchanger, pumps and intracellular machinery for Ca(2+) regulation. The model also incorporates inositol 1,4,5-triphosphate (IP(3)) production and IP(3)-mediated Ca(2+) release activities. Most of the parameters were obtained from the literature and were modified to fit the experimental results of ICCs from mouse small intestine. We were then able to compose a mathematical model that simulates the pacemaker activity of ICCs. The model generates pacemaker potentials regularly and repetitively as long as the simulation continues. The frequency was set at 20min(-1) and the duration at 50% repolarization was 639ms. The resting and overshoot potentials were -78 and +1.2mV, respectively. The reconstructed pacemaker potentials closely matched those obtained from animal experiments. The model supports the idea that cyclic changes in [Ca(2+)](i) and [IP(3)] play key roles in the generation of ICC pacemaker activity in the mouse small intestine. ================================================================================================ 1: Philos Transact A Math Phys Eng Sci. 2006 May 15;364(1842):1223-43. Links Simulation of Ca(2+)-activated Cl(-) current of cardiomyocytes in rabbit pulmonary vein: implications of subsarcolemmal Ca(2+) dynamics. Leem CH, Kim WT, Ha JM, Lee YJ, Seong HC, Choe H, Jang YJ, Youm JB, Earm YE. University of Ulsan College of Medicine Department of Physiology 388-1 Poongnap-Dong Songpa-Ku, Seoul 138-736, South Korea. In recent studies, we recorded transiently activated outward currents by the application of three-step voltage pulses to induce a reverse mode of Na(+)-Ca(2+) exchange (NCX). We found that these currents were mediated by a Ca(2+)-activated Cl(-) current. Based on the recent reports describing the atrial Ca(2+) transients, the Ca(2+) transient at the subsarcolemmal space was initiated and then diffused into the cytosolic space. Because the myocardium in the pulmonary vein is an extension of the atrium, the Ca(2+)-activated Cl(-) current may reflect the subsarcolemmal Ca(2+) dynamics. We tried to predict the subsarcolemmal Ca(2+) dynamics by simulating these current traces. According to recent reports on the geometry of atrial myocytes, we assumed that there were three compartments of sarcoplasmic reticulum (SR): a network SR, a junctional SR and a central SR. Based on these structures, we also divided the cytosolic space into three compartments: the junctional, subsarcolemmal and cytosolic spaces. Geometry information and cellular capacitance suggested that there were essentially no T-tubules in these cells. The basic physical data, such as the compartmental volumes, the diffusion coefficients and the stability coefficients of the Ca(2+) buffers, were obtained from the literature. In the simulation, we incorporated the NCX, the L-type Ca(2+) channel, the rapid activating outward rectifier K(+) channel, the Na(+)-K(+) pump, the SR Ca(2+)-pump, the ryanodine receptor, the Ca(2+)-activated Cl(-) channel and the dynamics of Na(+), K(+), Ca(2+) and Cl(-). In these conditions, we could successfully reconstruct the Ca(2+)-activated Cl(-) currents. The simulation allowed estimation of the Ca(2+) dynamics of each compartment and the distribution of the Ca(2+)-activated Cl(-) channel and the NCX in the sarcolemma on the junctional or subsarcolemmal space.
Total406 [ page4/28 ]
No. 제목 작성자 작성일 조회수
361 제 6회 논문연구계획서 발표대회: 최성우 학생 우수상 수상 첨부파일 2010.04.28 최성우 2010.04.28 2,859
360 다이어트 운동과 AMPK와의 관계 2010.04.20 고태희 2010.04.20 4,609
359 인슐린 생산 베타세포 재생 가능 2010.04.06 김형규 2010.04.06 3,453
358 축하합니다. 김나리 선생님: 2010 국제협력연구사업 선정 2010.03.05 한진 2010.03.05 3,581
357 동맥경화 촉진 유전자 찾아냈다...이화여대 오구택 교수 2010.02.25 허혜진 2010.02.25 3,293
356 국지적 항산화단백질 조절 메커니즘 규명...국가과학자 이서구 이화여대 교수 2010.02.25 허혜진 2010.02.25 3,295
355 Prog Biophys Mol Biol논문 accept소식 2010.02.20 박원선 2010.02.20 2,662
354 Pflugers Arch논문 accept소식 2010.02.17 박원선 2010.02.17 1,912
353 장미 박사님 질병관리본부 합격 2010.02.16 박원선 2010.02.16 2,976
352 Seaons's Greetings to ALL 첨부파일 2010.01.04 한진 2010.01.04 1,663
351 안준석 제 5회 부산미래과학자상 수상자 선정 첨부파일 2009.12.02 한진 2009.12.02 4,677
350 인슐린 신호전달과 미토콘드리아 기능을 통합시키는 Foxo1 첨부파일 2009.11.24 홍다혜 2009.11.24 5,358
349 심혈관·대사질환 10대 주목 프로젝트 선정 2009.11.16 한진 2009.11.16 2,357
348 JPS논문 accept소식 2009.11.06 박원선 2009.11.06 1,724
347 Bone논문 accept소식 2009.11.05 박원선 2009.11.05 2,369
처음이전 1 2 3 4 5 6 7 8 9 10 다음 마지막