0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

New therapeutic applications of retinoid-type compounds.

  • 작성자한진
  • 작성일2006-08-19 17:53:45
  • 조회수3279
  • 첨부파일첨부파일
New therapeutic applications of retinoid-type compounds. Spanish National Research Council (Consejo Superior de Investigaciones Cientificas, CSIC) Retinoid-type compounds can modulate the uncoupling proteins (UCP) activity and increase or decrease the heat dissipation in cells. These compounds could be used in the treatment of obesity or cachexia present in cancer patients. Licensing contact Pablo Zamorano Technology Transfer Expert, Technology Transfer Office Request more information Mechanism of action Retinoid-type compounds can be used to prepare a medicament being capable of in vivo modulating the uncoupling activity of UCP2. Industry sectors Pharmaceutical Therapeutic targets Metabolism Metabolism: Obesity Full description SUMMARY A group of researchers has determined a new use for retinoid- type compounds. These compounds can modulate the uncoupling proteins (UCP) activity and increase or decrease the heat dissipation in cells. These compounds could be used in the treatment of obesity or cachexia present in cancer patients. TECHNOLOGY DESCRIPTION Retinoids and, particularly retinoic acid, are known as natural molecules with important effects on cell differentiation. Retinoic acid (vitamin A acid) has found a very effective application in the treatment of severe forms of acne. The new therapeutic applications considered for the retinoic acid point towards another field, i.e. that of disorders and diseases associated to the increase or decrease of the expression or the activity of uncoupling proteins. Cellular respiration is a mechanism of oxidation of carbonated compounds which releases energy. It takes place in the mitochondria which are the organs responsible for cellular respiration. The so released energy is captured by the organism in diverse forms, particularly the synthesis of living matter, cell preservation, etc. If recovery of the energy is defective, oxidation continues but a major proportion of this energy is immediately dissipated as heat. Rupture of the link between respiration and energy recovery at mitochondria level is named uncoupling. The excessive production of heat can be regulated by two types of mechanisms: a) through the regulation of the genes encoded for certain proteins called uncoupling proteins or UCP proteins; or b) through a direct activation of the same proteins. Various UCP proteins have already been identified as responsible for uncoupling respiration and thus for the dissipation of a portion of the energy as heat in mammals. This activity is of major relevance as UCP proteins can be considered therapeutic targets for the treatment of pathologies, disorders or diseases being associated to the regulation of energy consumption. Brown fat tissue, specialized in thermogenesis possess an uncoupling protein (UCP1). Another uncoupling protein, named UCP2, displays a high structural and functional homology with UCP1 but interestingly it is expressed in many human tissues, and its uncoupling activity is activated by retinoids. The fact that UCP2 is present in many human tissues, particularly in white adipose tissue, and that it has been demonstrated that UCP2 expression is increased in mice fed a high-fat diet and by leptin, seems to indicate that this protein could be a good target for the development of new anti-obesity compounds or for the treatment of cachexia in cancer patients. It is important to stress that obesity is a major problem in the majority of industrialized countries, in such a degree that obesity is frequently associated to serious pathologies as some type of diabetes or even to hypertension. The inventors describe in a patent application that it was possible to act on uncoupling proteins by using retinoid-type compounds. Thus, retinoid-type compounds can be used to prepare a medicament being capable of in vivo modulating the uncoupling activity of UCP2. INNOVATIVE ASPECTS & COMPETITIVE ADVANTAGES The use of already know compounds for the treatment of new pathologies, which are designated as physiological disorders and diseases linked to the perturbation of the uncoupling activity of uncoupling proteins. Examples of these type of pathologies include among others, obesity or cachexia in cancer patients. CURRENT STAGE OF DEVELOPMENT Development phase. The results obtained are performed in vitro. In vivo assays would be necessary to characterize the activity of the compounds. Patent information European patent granted EP1018338. US patent pending US2002165280 and US2003229143. Type of business relationship sought License agreement. More information available on the web Please visit http://www.csic.es.
Total406 [ page6/28 ]
No. 제목 작성자 작성일 조회수
331 심장 비대와 연관된 새로운 세포 경로 규명 첨부파일 2009.03.03 홍다혜 2009.03.03 3,705
330 줄기세포연구과정에서 발견한 제2형 당뇨병의 기작 2009.02.26 한진 2009.02.26 2,448
329 심근세포의 증식(hyperplasia) 또는 비대(hypertrophy)를 결정하는 스위치: 심장섬유모세포(cardiac fibroblasts) 2009.02.26 한진 2009.02.26 3,107
328 경남매일에도 김형규쌤 상받는 올랐네요 2009.02.25 최성우 2009.02.25 2,017
327 인제학술대상에 의학과 박사과정 김형규 씨가 수상의 영광 첨부파일 2009.02.20 한진 2009.02.20 2,116
326 site link : National Institue of Health 2009.02.16 최성우 2009.02.16 1,656
325 세계 생리학회 개최, 2009년 2월호 인제대소식지에 실렸습니다 2009.02.10 최성우 2009.02.10 1,896
324 폐경기 여성의 심장 박동수 측정을 통한 심혈관 질환 발병 가능성 예측 첨부파일 2009.02.09 홍다혜 2009.02.09 2,389
323 심장비대를 줄여주는 신약의 개발 첨부파일 2009.02.08 홍다혜 2009.02.08 2,062
322 골다공증 일으키는 새 메커니즘 찾았다! 2009.02.05 홍다혜 2009.02.05 1,811
321 알츠하이머,치매 = 제3형 당뇨병? 2009.02.03 홍다혜 2009.02.03 2,079
320 콘드로이틴, 무릎 골관절염 진행을 지연시키고 증상을 완화 2009.02.02 홍다혜 2009.02.02 1,893
319 유신선생 논문, 축하해주세요. 2009.01.23 한진 2009.01.23 2,109
318 국내연구진, 비만·당뇨·지방간 치료약물 개발 2009.01.22 한진 2009.01.22 2,293
317 [매일경제 등등] 인제대, 15~17일 세계 생리학 학술대회 관련기사 2009.01.20 최성우 2009.01.20 1,916
처음이전 1 2 3 4 5 6 7 8 9 10 다음 마지막