0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

Possible target for future therapies aimed at delaying or stopping Alzheimer's disease

  • 작성자한진
  • 작성일2006-05-02 23:59:07
  • 조회수1895
  • 첨부파일첨부파일
Researchers at Oregon Health & Science University's Neurological Sciences Institute (NSI) have located a possible target for future therapies aimed at delaying or stopping Alzheimer's disease. Specifically, the therapy would target a structure in brain cells previously identified as being heavily involved in the degenerative disease. The research was led by P. Hemachandra Reddy, Ph.D., NSI scientist and senior author of the study. The results are published in the May 1 issue of the journal Human Molecular Genetics. "This latest research more clearly demonstrates how structures, called mitochondria, in brain cells are a key part of the disease process in Alzheimer's. In fact, mitochondria appear to be a site where significant disease progression takes place," explained Reddy. "Research published by our lab in 2004 highlighted genes tied to this process. We also believe that toxins produced by the mitochondria contribute to Alzheimer's disease progression. In other words, the entire system may be one big feedback loop. Therefore, it is possible that therapies which encourage normal mitochondrial function may in fact delay or stop the disease in its early stages by breaking the loop." To conduct the research, Reddy and his colleagues studied mice that are bred to have an Alzheimer's-like neurodegenerative disease. Like human Alzheimer's patients, the brains of these mice produce elevated levels of amyloid precursor protein (APP). They also develop formations called beta amyloid plaques. By observing mitochondrial function in brain cells of these mice, Reddy and his colleagues determined that beta amyloid could be found both inside and outside of the mitochondria. Because mitochondrial oxidative damage is a hallmark of Alzheimer's, the scientists believe the higher accumulations of these substances may be responsible. In addition, the scientists found increased levels of hydrogen peroxide in the Alzheimer's mice, likely produced by the mitochondria due to the oxidative damage. "We believe that the disease produces mutant APP and beta amyloid which in turn impacts mitochondrial function. This results in increased production of hydrogen peroxide, resulting in a progression of the disease and higher levels of beta amyloid," said Reddy. "In other words -- this model appears to be a vicious cycle where damage to brain cells increases and in fact feeds upon itself." Previous and concurrent research in human tissue taken from Alzheimer's patients also confirmed increased levels of beta amyloid in brain cell mitochondria and appear to agree with these conclusions. "The findings are very significant in providing a greater understanding the mechanisms behind Alzheimer's," explained study co-author Joseph F. Quinn, M.D., a clinical neurologist at the Layton Center for Aging & Alzheimer's Disease Research at OHSU and an associate professor of neurology, and cell and developmental biology in the OHSU School of Medicine. "In fact, OHSU is involved in a study funded by the National Institute on Aging of antioxidant therapy for Alzheimer's including antioxidants directed at the mitochondria." While the human studies are launched, Reddy and his colleagues will continue complimentary studies in the mouse models for Alzheimer's to determine whether the oxidative damage to mitochondria can be prevented in early stages of disease progression.
Total406 [ page7/28 ]
No. 제목 작성자 작성일 조회수
316 커피 하루 3-5잔, 치매 막는다 2009.01.19 홍다혜 2009.01.19 1,768
315 매 3분마다 1명의 비율로 발생하고 있는 영국에서의 당뇨병 발병 실태 2009.01.13 홍다혜 2009.01.13 1,681
314 갑상샘암 ‘쇼크’ ‘목 타는’ 여성들 2009.01.09 김형규 2009.01.09 1,811
313 심장의 영상을 향상시킬 새로운 복합체 2009.01.08 홍다혜 2009.01.08 1,500
312 유전성 심장질환에도 효과를 보인 고혈압 치료제 칸데살탄 2009.01.02 홍다혜 2009.01.02 2,241
311 부산대 수지상세포 국가지정연구실 J Immunol논문 개제 2008.12.30 박원선 2008.12.30 2,810
310 인제대, 부산미래과학자상 수상 2008.12.27 한진 2008.12.27 2,207
309 A Happy New Year from Mitochondrial Signaling Laboratory 첨부파일 2008.12.25 한진 2008.12.25 1,655
308 운동의 효과는 끝나고 쉬는 동안에도 지속된다 2008.10.27 하승희 2008.10.27 1,908
307 안녕하세요! 문 입니다. 2008.10.26 문혜진 2008.10.26 1,743
306 노벨 의학상, 2명 여성 과학자 선정 2008.10.06 한진 2008.10.06 2,173
305 200여 개의 유전자를 조절하는 오케스트라 지휘자, Npas4 (Nature) 2008.09.25 한진 2008.09.25 4,332
304 미토콘드리아 돌연변이에 의한 실명을 예방하는 유전자 요법 2008.09.10 김형규 2008.09.10 2,484
303 종양의 혈관을 비정상적으로 만드는 단백질: ROCK 2008.09.09 김형규 2008.09.09 2,173
302 항암제개발 세포통로 노려야 성과 2008.09.09 김형규 2008.09.09 1,973
처음이전 1 2 3 4 5 6 7 8 9 10 다음 마지막