0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

PGC-1 alpha implicated in Huntington's disease neurodegeneration

  • 작성자한진
  • 작성일2006-10-22 22:06:10
  • 조회수5091
  • 첨부파일첨부파일
A metabolic disorder underlies the brain effects found in those with Huntington's disease, researchers report in an advance article publishing online October 19, 2006. The article will appear in the November 2006 issue of the journal Cell Metabolism, published by Cell Press. Their new evidence ties a metabolic defect to the loss of neurons in the striatum, the brain's "movement control" region. That neurodegeneration leads to the uncontrollable "dance-like" movements characteristic of the fatal, genetic disorder. The findings may help to explain other symptoms of the disease, including weight loss, and could point to new avenues for therapy, according to the researchers. "Huntington's has been thought of primarily as a neurological disease," said Albert R. La Spada of the University of Washington, Seattle. "Our findings underscore the fact that the condition includes other, underrecognized aspects." The findings in Huntington's disease further highlight the possibility that other neurological conditions might also have a strong metabolic component, La Spada added. Huntington's is relentlessly progressive, the researchers said, as patients succumb to the disease 10 to 25 years after its onset. The disease is caused by a genetic defect in which a repetitive sequence of DNA in the "huntingtin" (htt) gene gets expanded to encode an abnormally elongated protein. Although the mutant htt protein is widely present, only certain populations of neurons degenerate and only a subset of other cell types are affected, they said. And exactly how the htt protein causes disease has remained uncertain. The researchers made their current discovery after stumbling onto evidence that mice with Huntington's disease suffer extremely low body temperatures that worsen as the disease progresses. "These mice have been around for at least a decade," La Spada said. "They have been the subjects of dozens, if not hundreds, of studies, but no one had checked one of their most basic vital signs. "When you do, you find that the mice have a dramatic abnormality in temperature--which is normally tightly regulated." Early on, the animals' temperature registered one or two degrees below normal, La Spada said. As their condition worsened, body temperatures fell substantially, he added, sometimes below 30?C. Like humans, the normal body temperature of mice is about 37?C. To trace the causes of the animals' hypothermia, the researchers first looked to the brain region that controls body temperature. The animals brains, however, appeared to register and respond to cold normally. The problem, they found, lay instead in fat cells known as brown adipose tissue (BAT). In rodents, BAT is the primary tissue that controls body temperature. When the brain signals that the body is cold, the gene called PGC-1 alpha increases production of a protein in BAT that leads the cellular powerhouses known as mitochondria to generate heat instead of energy. In the BAT of hypothermic Huntington's mice, PGC-1 alpha levels rose but failed to elicit the other events required to maintain normal body temperature, they found. The link to mitochondria-regulating PGC-1 alpha led the team back to the brain, and specifically to the striatum. That brain region is most affected in Huntington's disease and is particularly sensitive to mitochondrial dysfunction. The researchers found that tissue taken from striatums of Huntington's disease patients and mice showed reduced activity of genes controlled by PGC-1 alpha. They further found reduced mitochondrial function in the brains of Huntington's mice. The findings suggest a link between two theories to explain Huntington's disease, the researchers said. The earlier finding that the striatum is particularly sensitive to mitochondrial dysfunction suggested that the cellular powerhouses might play a role in the disease. Other evidence suggested that mutant htt might interfere with "transcription factors" that control gene activity. "PGC-1 alpha transcription interference may provide a link between transcription dysregulation and mitochondrial dysfunction in Huntington's disease," the researchers said. "More importantly, our study underscores an emerging role for metabolic and mitochondrial abnormalities in neurodegenerative disease." As metabolic function generally diminishes in older people, such a connection might explain why many neurodegenerative diseases--such as Lou Gehrig's, Alzheimer's, and Parkinson's diseases, for example--tend to emerge and worsen with age, La Spada said.
Total406 [ page10/28 ]
No. 제목 작성자 작성일 조회수
271 New Confocal microscope in Kimhae 첨부파일 2007.05.31 Dang Van Cuong 2007.05.31 2,265
270 Congratulation Mr Kim 2007.05.25 박원선 2007.05.25 2,218
269 축하 드립니다! 김형규샘! 2007.05.17 강성현 2007.05.17 2,718
268 고재홍선생님 좋아하는 HIF-1이네요. 2007.05.13 한진 2007.05.13 3,252
267 Congratulation Dr Park - for new paper 2007.04.30 강성현 2007.04.30 3,641
266 HUPO 6th Annual World Congress, Seoul 2007 첨부파일 2007.04.17 한진 2007.04.17 2,219
265 Congratulation, Dr. Park! 2007.04.12 한진 2007.04.12 2,049
264 당뇨병, 세계를 위협하는 무서운 질병으로 발전 2007.04.08 한진 2007.04.08 2,123
263 Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome? 2007.04.05 한진 2007.04.05 2,963
262 Congratulation to Prof. Warda! 2007.04.04 한진 2007.04.04 2,302
261 Congratulation!! Cuong 2007.03.27 박원선 2007.03.27 2,018
260 Patch setting및 mito puller setting 2007.03.19 박원선 2007.03.19 2,326
259 2006 HUPO 에서 뽑은 각 분야 포스터에 저희 포스터가 4개 선정되었습니다. 2007.03.17 김형규 2007.03.17 3,719
258 Two NIH funded postdoctoral positions are available immediately 2007.03.09 한진 2007.03.09 2,282
257 Please share the attached paper with all lab members. 첨부파일 2007.02.24 한진 2007.02.24 1,959
처음이전 1 2 3 4 5 6 7 8 9 10 다음 마지막