0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

PGC-1 alpha implicated in Huntington's disease neurodegeneration

  • 작성자한진
  • 작성일2006-10-22 22:06:10
  • 조회수5091
  • 첨부파일첨부파일
A metabolic disorder underlies the brain effects found in those with Huntington's disease, researchers report in an advance article publishing online October 19, 2006. The article will appear in the November 2006 issue of the journal Cell Metabolism, published by Cell Press. Their new evidence ties a metabolic defect to the loss of neurons in the striatum, the brain's "movement control" region. That neurodegeneration leads to the uncontrollable "dance-like" movements characteristic of the fatal, genetic disorder. The findings may help to explain other symptoms of the disease, including weight loss, and could point to new avenues for therapy, according to the researchers. "Huntington's has been thought of primarily as a neurological disease," said Albert R. La Spada of the University of Washington, Seattle. "Our findings underscore the fact that the condition includes other, underrecognized aspects." The findings in Huntington's disease further highlight the possibility that other neurological conditions might also have a strong metabolic component, La Spada added. Huntington's is relentlessly progressive, the researchers said, as patients succumb to the disease 10 to 25 years after its onset. The disease is caused by a genetic defect in which a repetitive sequence of DNA in the "huntingtin" (htt) gene gets expanded to encode an abnormally elongated protein. Although the mutant htt protein is widely present, only certain populations of neurons degenerate and only a subset of other cell types are affected, they said. And exactly how the htt protein causes disease has remained uncertain. The researchers made their current discovery after stumbling onto evidence that mice with Huntington's disease suffer extremely low body temperatures that worsen as the disease progresses. "These mice have been around for at least a decade," La Spada said. "They have been the subjects of dozens, if not hundreds, of studies, but no one had checked one of their most basic vital signs. "When you do, you find that the mice have a dramatic abnormality in temperature--which is normally tightly regulated." Early on, the animals' temperature registered one or two degrees below normal, La Spada said. As their condition worsened, body temperatures fell substantially, he added, sometimes below 30?C. Like humans, the normal body temperature of mice is about 37?C. To trace the causes of the animals' hypothermia, the researchers first looked to the brain region that controls body temperature. The animals brains, however, appeared to register and respond to cold normally. The problem, they found, lay instead in fat cells known as brown adipose tissue (BAT). In rodents, BAT is the primary tissue that controls body temperature. When the brain signals that the body is cold, the gene called PGC-1 alpha increases production of a protein in BAT that leads the cellular powerhouses known as mitochondria to generate heat instead of energy. In the BAT of hypothermic Huntington's mice, PGC-1 alpha levels rose but failed to elicit the other events required to maintain normal body temperature, they found. The link to mitochondria-regulating PGC-1 alpha led the team back to the brain, and specifically to the striatum. That brain region is most affected in Huntington's disease and is particularly sensitive to mitochondrial dysfunction. The researchers found that tissue taken from striatums of Huntington's disease patients and mice showed reduced activity of genes controlled by PGC-1 alpha. They further found reduced mitochondrial function in the brains of Huntington's mice. The findings suggest a link between two theories to explain Huntington's disease, the researchers said. The earlier finding that the striatum is particularly sensitive to mitochondrial dysfunction suggested that the cellular powerhouses might play a role in the disease. Other evidence suggested that mutant htt might interfere with "transcription factors" that control gene activity. "PGC-1 alpha transcription interference may provide a link between transcription dysregulation and mitochondrial dysfunction in Huntington's disease," the researchers said. "More importantly, our study underscores an emerging role for metabolic and mitochondrial abnormalities in neurodegenerative disease." As metabolic function generally diminishes in older people, such a connection might explain why many neurodegenerative diseases--such as Lou Gehrig's, Alzheimer's, and Parkinson's diseases, for example--tend to emerge and worsen with age, La Spada said.
Total406 [ page4/28 ]
No. 제목 작성자 작성일 조회수
361 제 6회 논문연구계획서 발표대회: 최성우 학생 우수상 수상 첨부파일 2010.04.28 최성우 2010.04.28 2,859
360 다이어트 운동과 AMPK와의 관계 2010.04.20 고태희 2010.04.20 4,609
359 인슐린 생산 베타세포 재생 가능 2010.04.06 김형규 2010.04.06 3,453
358 축하합니다. 김나리 선생님: 2010 국제협력연구사업 선정 2010.03.05 한진 2010.03.05 3,581
357 동맥경화 촉진 유전자 찾아냈다...이화여대 오구택 교수 2010.02.25 허혜진 2010.02.25 3,293
356 국지적 항산화단백질 조절 메커니즘 규명...국가과학자 이서구 이화여대 교수 2010.02.25 허혜진 2010.02.25 3,295
355 Prog Biophys Mol Biol논문 accept소식 2010.02.20 박원선 2010.02.20 2,662
354 Pflugers Arch논문 accept소식 2010.02.17 박원선 2010.02.17 1,912
353 장미 박사님 질병관리본부 합격 2010.02.16 박원선 2010.02.16 2,976
352 Seaons's Greetings to ALL 첨부파일 2010.01.04 한진 2010.01.04 1,663
351 안준석 제 5회 부산미래과학자상 수상자 선정 첨부파일 2009.12.02 한진 2009.12.02 4,677
350 인슐린 신호전달과 미토콘드리아 기능을 통합시키는 Foxo1 첨부파일 2009.11.24 홍다혜 2009.11.24 5,358
349 심혈관·대사질환 10대 주목 프로젝트 선정 2009.11.16 한진 2009.11.16 2,357
348 JPS논문 accept소식 2009.11.06 박원선 2009.11.06 1,724
347 Bone논문 accept소식 2009.11.05 박원선 2009.11.05 2,369
처음이전 1 2 3 4 5 6 7 8 9 10 다음 마지막