0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

와우!! 축하합니다. 염재범 선생님 논문 2편이 출판되었습니다.

  • 작성자한진
  • 작성일2006-04-14 02:02:29
  • 조회수2588
  • 첨부파일첨부파일
Philos Transact A Math Phys Eng Sci. 2006 May 15;364(1842):1135-54. A mathematical model of pacemaker activity recorded from mouse small intestine. Youm JB, Kim N, Han J, Kim E, Joo H, Leem CH, Goto G, Noma A, Earm YE. College of Medicine, 2020 Cardiovascular Institute, Inje University Mitochondrial Signaling Laboratory, Department of Physiology and Biophysics Busan 614-735, South Korea. The pacemaker activity of interstitial cells of Cajal (ICCs) has been known to initiate the propagation of slow waves along the whole gastrointestinal tract through spontaneous and repetitive generation of action potentials. We studied the mechanism of the pacemaker activity of ICCs in the mouse small intestine and tested it using a mathematical model. The model includes ion channels, exchanger, pumps and intracellular machinery for Ca(2+) regulation. The model also incorporates inositol 1,4,5-triphosphate (IP(3)) production and IP(3)-mediated Ca(2+) release activities. Most of the parameters were obtained from the literature and were modified to fit the experimental results of ICCs from mouse small intestine. We were then able to compose a mathematical model that simulates the pacemaker activity of ICCs. The model generates pacemaker potentials regularly and repetitively as long as the simulation continues. The frequency was set at 20min(-1) and the duration at 50% repolarization was 639ms. The resting and overshoot potentials were -78 and +1.2mV, respectively. The reconstructed pacemaker potentials closely matched those obtained from animal experiments. The model supports the idea that cyclic changes in [Ca(2+)](i) and [IP(3)] play key roles in the generation of ICC pacemaker activity in the mouse small intestine. ================================================================================================ 1: Philos Transact A Math Phys Eng Sci. 2006 May 15;364(1842):1223-43. Links Simulation of Ca(2+)-activated Cl(-) current of cardiomyocytes in rabbit pulmonary vein: implications of subsarcolemmal Ca(2+) dynamics. Leem CH, Kim WT, Ha JM, Lee YJ, Seong HC, Choe H, Jang YJ, Youm JB, Earm YE. University of Ulsan College of Medicine Department of Physiology 388-1 Poongnap-Dong Songpa-Ku, Seoul 138-736, South Korea. In recent studies, we recorded transiently activated outward currents by the application of three-step voltage pulses to induce a reverse mode of Na(+)-Ca(2+) exchange (NCX). We found that these currents were mediated by a Ca(2+)-activated Cl(-) current. Based on the recent reports describing the atrial Ca(2+) transients, the Ca(2+) transient at the subsarcolemmal space was initiated and then diffused into the cytosolic space. Because the myocardium in the pulmonary vein is an extension of the atrium, the Ca(2+)-activated Cl(-) current may reflect the subsarcolemmal Ca(2+) dynamics. We tried to predict the subsarcolemmal Ca(2+) dynamics by simulating these current traces. According to recent reports on the geometry of atrial myocytes, we assumed that there were three compartments of sarcoplasmic reticulum (SR): a network SR, a junctional SR and a central SR. Based on these structures, we also divided the cytosolic space into three compartments: the junctional, subsarcolemmal and cytosolic spaces. Geometry information and cellular capacitance suggested that there were essentially no T-tubules in these cells. The basic physical data, such as the compartmental volumes, the diffusion coefficients and the stability coefficients of the Ca(2+) buffers, were obtained from the literature. In the simulation, we incorporated the NCX, the L-type Ca(2+) channel, the rapid activating outward rectifier K(+) channel, the Na(+)-K(+) pump, the SR Ca(2+)-pump, the ryanodine receptor, the Ca(2+)-activated Cl(-) channel and the dynamics of Na(+), K(+), Ca(2+) and Cl(-). In these conditions, we could successfully reconstruct the Ca(2+)-activated Cl(-) currents. The simulation allowed estimation of the Ca(2+) dynamics of each compartment and the distribution of the Ca(2+)-activated Cl(-) channel and the NCX in the sarcolemma on the junctional or subsarcolemmal space.
Total406 [ page15/28 ]
No. 제목 작성자 작성일 조회수
196 Congratulation!! Site specific differential activation of ras/raf/ERK signaling in rabbit isoproterenol-induced left ventricular hypertrophy (4)첨부파일 2006.10.02 한진 2006.10.02 3,015
195 박원선 선생님, 축하합니다. (7)첨부파일 2006.09.15 한진 2006.09.15 2,212
194 Recent Clinical trialsII 2006.09.10 한진 2006.09.10 2,298
193 Recent Clinical Trials 2006.09.10 한진 2006.09.10 2,214
192 Cholesterol implicated in progression of fatty liver disease 2006.09.10 한진 2006.09.10 6,100
191 Sir Hans Adolf Krebs, German-born English biochemist, born August 25, 1900, Hildesheim; died November 22, 1981, Oxford. 2006.08.25 한진 2006.08.25 5,593
190 Mitochondrial Medicine 첨부파일 2006.08.24 한진 2006.08.24 3,525
189 뇌졸중·심장병 부르는 혈관질환 (2) 2006.08.23 한진 2006.08.23 2,594
188 Congratulation!! Our paper posted "the latest top 25 lists of most read articles within Mitochondrion" (2)첨부파일 2006.08.20 한진 2006.08.20 2,175
187 New therapeutic applications of retinoid-type compounds. 2006.08.19 한진 2006.08.19 3,279
186 미토콘드리아 DNA 개인차가 신경세포사에 관여 2006.08.14 한진 2006.08.14 2,374
185 INTERESTING!! Cell death is single, quick event!! 2006.08.13 한진 2006.08.13 2,043
184 Mouse Study Shows Gene Therapy Provides Temporary Protection from Radiation 첨부파일 2006.08.13 한진 2006.08.13 2,415
183 New light microscope sharpens scientists' focus 첨부파일 2006.08.13 한진 2006.08.13 5,730
182 Special Feature: Staying Well - Safety in the Lab 2006.08.08 한진 2006.08.08 2,417
처음 이전 11 12 13 14 15 16 17 18 19 20 다음 마지막