0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

New light on muscle efficiency: it is not the power-plant

  • 작성자한진
  • 작성일2006-03-24 19:29:31
  • 조회수2089
  • 첨부파일첨부파일
A recent study from Scandinavia shows that the well-known differences between individuals in the efficiency of converting energy stored in food to work done by muscles are related to muscle fibre type composition and to the content of specific molecules in muscle. When muscles contract they use energy that is derived from food. It is a two-step process. The first step occurs in mitochondria, where the energy from molecules like glucose or fats is locked away in ATP (adenosine triphosphate). This ATP travels from the mitochondria to sites in the muscle where energy is needed, and the energy is released and used. At both of these stages there is the possibility for energy to be lost, causing a reduction in efficiency. The proportion of food energy that ends up making the muscles move is a measure of the efficiency of the system, and this is known to vary considerably between people. The main theory is that this variation comes from differences in the efficiency with which mitochondria convert food energy to ATP. But results published in this fortnight’s edition of The Journal of Physiology indicate that any differences in the efficiency of individual mitochondria cannot explain the differences in overall efficiency between people. Consequently these differences must lie in the way the ATP is used within the muscle. The research was carried out on healthy human volunteers by a team of scientists working at the University of Southern Denmark, Odense, and the Karolinska Institute/GIH, in Stockholm, Sweden. It combined exercise testing of individuals, with laboratory analysis of muscle samples. The results showed that work efficiency was correlated with muscle fibre type composition and with the amount of UCP3 protein – muscles with high proportions of this protein had lower efficiencies than those with low proportions. “It’s too early to say whether UCP3 causes this difference, or whether it is a marker of some other process, but further research might someday lead to training strategies that will help us improve efficiency, or identify subjects who have the potential to become more efficient over time,” says lead author Martin Mogensen. “The work is an excellent example of integrative physiology, addressing questions both at the sub-cellular and whole body levels that have implications for basic muscle energetics as well as athletic performance,” says Professor Edward Coyle, of the University of Texas at Austin, in an accompanying editorial. Source: Blackwell Publishing Ltd.
Total406 [ page19/28 ]
No. 제목 작성자 작성일 조회수
136 How brain cells die in patients with Alzheimer's Disease 2006.03.19 한진 2006.03.19 1,913
135 Age Accelerator 첨부파일 2006.03.15 한진 2006.03.15 2,637
134 Repligen Initiates Phase 2 Clinical Trial Of RG2417 For Bipolar Depression 2006.03.15 한진 2006.03.15 16,093
133 Genetic Switch That Turns Off An Oxygen-poor Cell's Combustion Engine Discovered By Hopkins Researchers 2006.03.15 한진 2006.03.15 5,608
132 Excerpt, "Younger Next Year For Women" (1) 2006.03.05 한진 2006.03.05 2,886
131 ULTRAMETABOLISM: The Simple Plan for Automatic Weight Loss with Mark Hyman, M.D. 2006.03.05 한진 2006.03.05 1,735
130 Biomarkers May Hone Anti-aging Therapies 2006.03.05 한진 2006.03.05 2,374
129 Want a long life? Drink chocolate milk! 2006.03.05 한진 2006.03.05 1,987
128 Levitra May Protect The Heart, VCU Study Shows a protective effect against heart attack injury by opening the mitochondrial KATP channel 2006.02.26 한진 2006.02.26 4,583
127 Second Low-oxygen Pathway That Promotes Cell Survival In Low-oxygen Conditions Hints At Cancer, Cardiovascular Disease Physiology 2006.02.26 한진 2006.02.26 2,941
126 Proteins are key to cell death in heart disease, stroke and degenerative conditions 2006.02.26 한진 2006.02.26 1,892
125 뇌혈관 또는 심장 질환 사망 2006.02.26 한진 2006.02.26 1,704
124 축하합니다. Biochem Biophys Res Commun 논문 출판되었습니다. (4)첨부파일 2006.02.15 한진 2006.02.15 2,546
123 [답변]2005년 생명공학백서가 발간 되었습니다. [생명공학정책연구센터] 첨부파일 2006.02.11 한진 2006.02.11 1,530
122 PROTEOMICS 논문 출판되었습니다. 축하합니다. (2)첨부파일 2006.02.11 한진 2006.02.11 2,363
처음 이전 11 12 13 14 15 16 17 18 19 20 다음 마지막