0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

New light on muscle efficiency: it is not the power-plant

  • 작성자한진
  • 작성일2006-03-24 19:29:31
  • 조회수2089
  • 첨부파일첨부파일
A recent study from Scandinavia shows that the well-known differences between individuals in the efficiency of converting energy stored in food to work done by muscles are related to muscle fibre type composition and to the content of specific molecules in muscle. When muscles contract they use energy that is derived from food. It is a two-step process. The first step occurs in mitochondria, where the energy from molecules like glucose or fats is locked away in ATP (adenosine triphosphate). This ATP travels from the mitochondria to sites in the muscle where energy is needed, and the energy is released and used. At both of these stages there is the possibility for energy to be lost, causing a reduction in efficiency. The proportion of food energy that ends up making the muscles move is a measure of the efficiency of the system, and this is known to vary considerably between people. The main theory is that this variation comes from differences in the efficiency with which mitochondria convert food energy to ATP. But results published in this fortnight’s edition of The Journal of Physiology indicate that any differences in the efficiency of individual mitochondria cannot explain the differences in overall efficiency between people. Consequently these differences must lie in the way the ATP is used within the muscle. The research was carried out on healthy human volunteers by a team of scientists working at the University of Southern Denmark, Odense, and the Karolinska Institute/GIH, in Stockholm, Sweden. It combined exercise testing of individuals, with laboratory analysis of muscle samples. The results showed that work efficiency was correlated with muscle fibre type composition and with the amount of UCP3 protein – muscles with high proportions of this protein had lower efficiencies than those with low proportions. “It’s too early to say whether UCP3 causes this difference, or whether it is a marker of some other process, but further research might someday lead to training strategies that will help us improve efficiency, or identify subjects who have the potential to become more efficient over time,” says lead author Martin Mogensen. “The work is an excellent example of integrative physiology, addressing questions both at the sub-cellular and whole body levels that have implications for basic muscle energetics as well as athletic performance,” says Professor Edward Coyle, of the University of Texas at Austin, in an accompanying editorial. Source: Blackwell Publishing Ltd.
Total406 [ page15/28 ]
No. 제목 작성자 작성일 조회수
196 Congratulation!! Site specific differential activation of ras/raf/ERK signaling in rabbit isoproterenol-induced left ventricular hypertrophy (4)첨부파일 2006.10.02 한진 2006.10.02 3,015
195 박원선 선생님, 축하합니다. (7)첨부파일 2006.09.15 한진 2006.09.15 2,212
194 Recent Clinical trialsII 2006.09.10 한진 2006.09.10 2,298
193 Recent Clinical Trials 2006.09.10 한진 2006.09.10 2,214
192 Cholesterol implicated in progression of fatty liver disease 2006.09.10 한진 2006.09.10 6,100
191 Sir Hans Adolf Krebs, German-born English biochemist, born August 25, 1900, Hildesheim; died November 22, 1981, Oxford. 2006.08.25 한진 2006.08.25 5,593
190 Mitochondrial Medicine 첨부파일 2006.08.24 한진 2006.08.24 3,525
189 뇌졸중·심장병 부르는 혈관질환 (2) 2006.08.23 한진 2006.08.23 2,594
188 Congratulation!! Our paper posted "the latest top 25 lists of most read articles within Mitochondrion" (2)첨부파일 2006.08.20 한진 2006.08.20 2,175
187 New therapeutic applications of retinoid-type compounds. 2006.08.19 한진 2006.08.19 3,279
186 미토콘드리아 DNA 개인차가 신경세포사에 관여 2006.08.14 한진 2006.08.14 2,374
185 INTERESTING!! Cell death is single, quick event!! 2006.08.13 한진 2006.08.13 2,043
184 Mouse Study Shows Gene Therapy Provides Temporary Protection from Radiation 첨부파일 2006.08.13 한진 2006.08.13 2,415
183 New light microscope sharpens scientists' focus 첨부파일 2006.08.13 한진 2006.08.13 5,730
182 Special Feature: Staying Well - Safety in the Lab 2006.08.08 한진 2006.08.08 2,417
처음 이전 11 12 13 14 15 16 17 18 19 20 다음 마지막