0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

파킨슨 질병은 미토콘드리아 complex 1 손상 보다 microtuble 에 의해서 생길수도... 라는 논문

  • 작성자김형규
  • 작성일2011-03-08 19:12:02
  • 조회수5385
  • 첨부파일첨부파일
journal of cell biology 에 나온 최근 논문입니다. Public release date: 7-Mar-2011 [ Print | E-mail | Share ] [ Close Window ] Contact: Rita Sullivan news@rupress.org 212-327-8603 Rockefeller University Press Parkinson's disease may be caused by microtubule, rather than mitochondrial complex I, dysfunction IMAGE: Choi et al. show that rotenone -- a drug that induces Parkinson's disease in rodents -- selectively kills dopaminergic neurons by depolymerizing microtubules, leading to the accumulation of dopamine and... Click here for more information. Patients with Parkinson's disease (PD) suffer a specific loss of dopaminergic neurons from the midbrain region that controls motor function. The exact mechanism of this selective neurodegeneration is unclear, though many lines of evidence point to dysfunctional mitochondrial complex I as one root cause of the disease. Yet new research now suggests that defective regulation of microtubules may be responsible for at least some cases of PD. The study appears in the March 7 issue of The Journal of Cell Biology (www.jcb.org). Mitochondria were first implicated in PD when drug users in California developed Parkinson's-like symptoms due to a contaminant in their heroin supply called MPTP. This chemical is metabolized in the brain into MPP+, a compound that blocks oxidative phosphorylation by inhibiting mitochondrial complex I. Subsequently, other chemicals such as rotenone were shown to inhibit complex I and induce PD in animal models, and PD patients were found to have reduced levels of complex I activity. Moreover, several proteins linked to genetic forms of PD are involved in maintaining normal mitochondrial function. But in 2008, Zhengui Xia and colleagues at the University of Washington in Seattle began to cast doubt on complex I's guilt. "We didn't set out to prove anybody wrong," says Xia. "We just wanted to do a quick experiment to provide genetic proof that complex I inhibition causes dopaminergic neuron death." Xia and colleagues therefore examined mice lacking an essential subunit of complex I called Ndufs4. To their surprise, dopaminergic neurons from these mice were healthy and remained sensitive to MPP+- and rotenone-induced death. This suggested that complex I inhibition is insufficient to cause dopaminergic nerve apoptosis. Confirming this, the team found that another complex I inhibitor, piericidin A, has no effect on dopaminergic cell survival. "So if it's not by inhibiting complex I, what is the mechanism [by which rotenone and other drugs kills these neurons]?" says Xia. The researchers turned their attention to another property of rotenone: the drug also depolymerizes microtubules. Cultured dopaminergic neurons were spared from rotenone-induced death if they were co-treated with the microtubule-stabilizing drug taxol. On the other hand, the depolymerizing agent colchicine was as deadly as rotenone to dopamine-producing neurons. But why do these microtubule-disrupting drugs only kill dopaminergic neurons and not other types of nerve cells? "Microtubule disassembly impairs dopamine release, so dopamine accumulates in the cell," explains Xia. Excess cytoplasmic dopamine may then be oxidized, producing reactive oxygen species (ROS) that induce cell death. Taxol prevented rotenone from increasing dopamine and ROS levels, and drugs that inhibit either dopamine synthesis or ROS protected neurons from rotenone-induced death. Rotenone may have an additional dirty trick up its sleeve. The researchers think that the drug also inhibits VMAT2, the protein that transports dopamine into synaptic vesicles. Boosting VMAT2 expression promoted dopaminergic neuron survival, presumably by removing excess dopamine from the cytoplasm, thereby limiting the neurotransmitter's oxidation. Yet mitochondrial complex I isn't a completely innocent bystander. Dopaminergic neurons lacking Ndufs4 are actually more sensitive to rotenone than wild-type neurons. The loss of complex I causes its substrate, NADH, to accumulate, which in turn boosts the activity of the enzyme that synthesizes dopamine. "The basal dopamine level is higher in knockout cells," explains Xia. "It's not high enough to cause a problem by itself, but it synergizes with rotenone's inhibition of microtubules and VMAT2." Simultaneous inhibition of mitochondrial and microtubule function by different environmental and genetic factors may therefore contribute to PD. Indeed, several proteins linked to familial PD can influence the microtubule cytoskeleton. The E3 ubiquitin ligase Parkin, for example, targets alpha- and beta-tubulin, as well as dysfunctional mitochondria, for degradation. Xia says she now wants to confirm her group's findings in vivo. Ndufs4-knockout mice die at 7 weeks, so conditional knockout models will be needed to check for PD-like symptoms in older animals.
Total406 [ page21/28 ]
No. 제목 작성자 작성일 조회수
106 염재범선생님 논문이 출판되었습니다. (6) 2005.12.08 한진 2005.12.08 2,052
105 축하드립니다. 김태호 샘 (5)첨부파일 2005.11.11 주현 2005.11.11 1,744
104 2005년 박사후연수과정지원사업 최종선정과제 공고 및 협약체결 안내 (4) 2005.11.10 한진 2005.11.10 2,017
103 축하합니다. 강성현, 김현주 선생님!! (6)첨부파일 2005.11.02 한진 2005.11.02 1,983
102 주현교수님, 전공 관련!! (5) 2005.10.28 한진 2005.10.28 1,952
101 바로 아래 (3)첨부파일 2005.10.26 한진 2005.10.26 1,757
100 DNA 이중나선, 왜 갑자기 방향 바꿀까? (7)첨부파일 2005.10.26 한진 2005.10.26 3,267
99 "인지질의 세포 활성화 메커니즘 규명" 호원경 서울대 교수 등 국내 연구진 개가 (1) 2005.10.19 주현 2005.10.19 2,312
98 "최강 IT에 BT실력까지…한국 미래 밝다" (1) 2005.10.17 김태호 2005.10.17 1,864
97 "ITㆍBT융합에 한국미래 달렸다" (1) 2005.10.17 김태호 2005.10.17 1,916
96 고속전자동 단백질 이차원 전기영동(電気泳動) 시스템 (1) 2005.10.14 김태호 2005.10.14 3,074
95 미토콘드리아가 관여하는 세포 사멸 경로 규명 (2)첨부파일 2005.10.13 한진 2005.10.13 2,124
94 미토콘드리아가 관여하는 세포 사멸 경로 규명 (1) 2005.10.11 김태호 2005.10.11 3,086
93 한진교수님 수상소식 과총소식란에 게재 (2)첨부파일 2005.09.29 김태호 2005.09.29 1,953
92 한진교수님 국제신문 금일 기사입니다. (7)첨부파일 2005.09.28 주현 2005.09.28 1,987
처음 이전 21 22 23 24 25 26 27 28 다음마지막