0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

Mitochondria Make A Comeback, Science (Cover page)

  • 작성자한진
  • 작성일2005-01-27 13:14:17
  • 조회수3329
  • 첨부파일첨부파일
Science 03-05-1999 It was more than 50 years ago that mitochondria first captured the attention of cell physiologists. Abundant, easy to purify, and a rich source of vital enzymes, these organelles were pivotal in the Nobel Prize-winning research that defined the fundamental principles of cellular energy metabolism. But over the years, as technological advances in molecular biology made nuclear functions more accessible to researchers, interest in mitochondria began to wane. It appears that this lapse was only temporary. Our special section illustrates that mitochondria are once again at the forefront of research--this time in fields as diverse as cell death, evolutionary biology, molecular medicine, and even forensic science. One of the most important developments has been the recognition that mitochondria play a central role in the regulation of programmed cell death, or apoptosis. As reviewed in a recent issue of Science (28 August 1998, p. 1309), mitochondria can trigger cell death in a number of ways: by disrupting electron transport and energy metabolism, by releasing/activating proteins that mediate apoptosis, and by altering cellular redox potential. Any or all of these mechanisms may help to explain how mitochondrial defects contribute to the pathogenesis of human degenerative diseases, aging, and cancer. This theme is developed further by Wallace, who reviews the genetics of mitochondrial disease, a field that has witnessed phenomenal growth in the past 10 years. Also discussed are new mouse models of mitochondrial disease, which should greatly enhance our understanding of pathogenetic mechanisms and allow development and testing of new therapies. Mitochondria feature prominently in evolutionary biology in at least two important ways. The question of how the mitochondrion itself originated is addressed by Gray et al., who discuss recent comparative sequence analyses of primitive mitochondrial and eubacterial genomes--results that seem to challenge certain aspects of popular endosymbiotic models. A News story by E. Strauss (p. 1435) examines new developments in the use of mitochondrial DNA as a "clock" to gauge the relatedness and origin of various species. Because the mitochondrial clock does not tick steadily, some researchers question its reliability for dating evolutionary events, while others argue that with careful use, the clock can produce accurate results. Mitochondria produce most of the cell's energy by oxidative phosphorylation, a process that requires the orchestrated actions of five respiratory enzyme complexes located in the mitochondrial inner membrane. Atomic resolution structures are now available for key components of three of these complexes: cytochrome bc1, cytochrome c oxidase, and ATP synthase. Saraste discusses how this new information has both substantiated earlier ideas about enzyme mechanisms and yielded some surprises. Finally, because mitochondria are essential for cell viability, mechanisms must exist to ensure their distribution to daughter cells during cell division. Mitochondrial inheritance/movement is no longer thought to be a passive process but one that requires the action of an elaborate cytoskeletal machinery. Yaffe reviews the components of this machinery, just now beginning to be identified by genetic and biochemical approaches. All this leaves no doubt that mitochondria will retain a captive audience for some time to come. --PAULA A. KIBERSTIS Copyright © 1999 by the American Association for the Advancement of Science
Total406 [ page27/28 ]
No. 제목 작성자 작성일 조회수
16 "old" mice가 노화에서 key로서 작용한다. 2005.01.26 문혜진 2005.01.26 2,079
15 프로테오믹스 연구의 최신동향과 활용 첨부파일 2005.01.25 주현 2005.01.25 2,020
14 연구와 마켓 - nanobiotechnmologes applications, 마켓 그리고 회사들 2005.01.25 이현숙 2005.01.25 1,999
13 스웨덴 과학자들이 부분적으로 노화의 미스테리를 풀었다. 2005.01.25 이현숙 2005.01.25 2,120
12 STKE : the mitochondria으로부터의 칼슘 신호전달 2005.01.25 이현숙 2005.01.25 2,436
11 drug의 힘 2005.01.25 이현숙 2005.01.25 2,034
10 MFIC의 microfluidizer procesor는 thechnion에서 Mitochondrial 연구를 운행한다. 2005.01.25 이현숙 2005.01.25 3,049
9 Primagen은 과학적인 연구 사용을 위한 Retina Mitox Mitochondrial(TM) DNA Blood Test로 진단하는 탐색법을 제공한다. 2005.01.25 이현숙 2005.01.25 2,082
8 노화에서 유전자 손상의 중요 인자 첨부파일 2005.01.25 김현주 2005.01.25 1,707
7 미토콘드리아와 장수 첨부파일 2005.01.25 김현주 2005.01.25 1,740
6 미토콘드리아와 당뇨병의 관계 첨부파일 2005.01.25 김현주 2005.01.25 1,695
5 새로운 과학 분야는 세상에서 가장 치명적인 퇴행성 질환의 치료에 주력하고 있다. 첨부파일 2005.01.25 김현주 2005.01.25 1,819
4 apoptosis에 있어서 세포의 mitochondria의 역할 첨부파일 2005.01.25 이영숙 2005.01.25 2,814
3 mitochondrial DNA mutation이 혈압과 콜레스테롤 수치에 직접적으로 영향을 미친다. 2005.01.25 이영숙 2005.01.25 2,516
2 미토콘드리아 DNA변이와 노호의 관계 2005.01.25 이영숙 2005.01.25 1,951
처음 이전 21 22 23 24 25 26 27 28 다음마지막