0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

Mitochondria Make A Comeback, Science (Cover page)

  • 작성자한진
  • 작성일2005-01-27 13:14:17
  • 조회수3329
  • 첨부파일첨부파일
Science 03-05-1999 It was more than 50 years ago that mitochondria first captured the attention of cell physiologists. Abundant, easy to purify, and a rich source of vital enzymes, these organelles were pivotal in the Nobel Prize-winning research that defined the fundamental principles of cellular energy metabolism. But over the years, as technological advances in molecular biology made nuclear functions more accessible to researchers, interest in mitochondria began to wane. It appears that this lapse was only temporary. Our special section illustrates that mitochondria are once again at the forefront of research--this time in fields as diverse as cell death, evolutionary biology, molecular medicine, and even forensic science. One of the most important developments has been the recognition that mitochondria play a central role in the regulation of programmed cell death, or apoptosis. As reviewed in a recent issue of Science (28 August 1998, p. 1309), mitochondria can trigger cell death in a number of ways: by disrupting electron transport and energy metabolism, by releasing/activating proteins that mediate apoptosis, and by altering cellular redox potential. Any or all of these mechanisms may help to explain how mitochondrial defects contribute to the pathogenesis of human degenerative diseases, aging, and cancer. This theme is developed further by Wallace, who reviews the genetics of mitochondrial disease, a field that has witnessed phenomenal growth in the past 10 years. Also discussed are new mouse models of mitochondrial disease, which should greatly enhance our understanding of pathogenetic mechanisms and allow development and testing of new therapies. Mitochondria feature prominently in evolutionary biology in at least two important ways. The question of how the mitochondrion itself originated is addressed by Gray et al., who discuss recent comparative sequence analyses of primitive mitochondrial and eubacterial genomes--results that seem to challenge certain aspects of popular endosymbiotic models. A News story by E. Strauss (p. 1435) examines new developments in the use of mitochondrial DNA as a "clock" to gauge the relatedness and origin of various species. Because the mitochondrial clock does not tick steadily, some researchers question its reliability for dating evolutionary events, while others argue that with careful use, the clock can produce accurate results. Mitochondria produce most of the cell's energy by oxidative phosphorylation, a process that requires the orchestrated actions of five respiratory enzyme complexes located in the mitochondrial inner membrane. Atomic resolution structures are now available for key components of three of these complexes: cytochrome bc1, cytochrome c oxidase, and ATP synthase. Saraste discusses how this new information has both substantiated earlier ideas about enzyme mechanisms and yielded some surprises. Finally, because mitochondria are essential for cell viability, mechanisms must exist to ensure their distribution to daughter cells during cell division. Mitochondrial inheritance/movement is no longer thought to be a passive process but one that requires the action of an elaborate cytoskeletal machinery. Yaffe reviews the components of this machinery, just now beginning to be identified by genetic and biochemical approaches. All this leaves no doubt that mitochondria will retain a captive audience for some time to come. --PAULA A. KIBERSTIS Copyright © 1999 by the American Association for the Advancement of Science
Total406 [ page21/28 ]
No. 제목 작성자 작성일 조회수
106 염재범선생님 논문이 출판되었습니다. (6) 2005.12.08 한진 2005.12.08 2,053
105 축하드립니다. 김태호 샘 (5)첨부파일 2005.11.11 주현 2005.11.11 1,746
104 2005년 박사후연수과정지원사업 최종선정과제 공고 및 협약체결 안내 (4) 2005.11.10 한진 2005.11.10 2,018
103 축하합니다. 강성현, 김현주 선생님!! (6)첨부파일 2005.11.02 한진 2005.11.02 1,984
102 주현교수님, 전공 관련!! (5) 2005.10.28 한진 2005.10.28 1,953
101 바로 아래 (3)첨부파일 2005.10.26 한진 2005.10.26 1,757
100 DNA 이중나선, 왜 갑자기 방향 바꿀까? (7)첨부파일 2005.10.26 한진 2005.10.26 3,267
99 "인지질의 세포 활성화 메커니즘 규명" 호원경 서울대 교수 등 국내 연구진 개가 (1) 2005.10.19 주현 2005.10.19 2,312
98 "최강 IT에 BT실력까지…한국 미래 밝다" (1) 2005.10.17 김태호 2005.10.17 1,864
97 "ITㆍBT융합에 한국미래 달렸다" (1) 2005.10.17 김태호 2005.10.17 1,916
96 고속전자동 단백질 이차원 전기영동(電気泳動) 시스템 (1) 2005.10.14 김태호 2005.10.14 3,074
95 미토콘드리아가 관여하는 세포 사멸 경로 규명 (2)첨부파일 2005.10.13 한진 2005.10.13 2,124
94 미토콘드리아가 관여하는 세포 사멸 경로 규명 (1) 2005.10.11 김태호 2005.10.11 3,088
93 한진교수님 수상소식 과총소식란에 게재 (2)첨부파일 2005.09.29 김태호 2005.09.29 1,953
92 한진교수님 국제신문 금일 기사입니다. (7)첨부파일 2005.09.28 주현 2005.09.28 1,987
처음 이전 21 22 23 24 25 26 27 28 다음마지막