0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

미토콘드리아와 건강

  • 작성자주현
  • 작성일2005-01-30 19:07:47
  • 조회수1836
  • 첨부파일첨부파일
Association between fitness and survival suggests a link between impaired oxygen metabolism and disease Posted By: News-Medical in Medical Research News Published: Wednesday, 26-Jan-2005 Research published in the current issue of Science magazine reinforces the belief that aerobic capacity is an important determinant in the continuum between health and disease. "Our data clearly show that the some of the major health problems of today, namely obesity, hypertension, and insulin resistance, are strongly influenced by our genes," said Steven Swoap, associate professor of biology at Williams Colleges, a member of the research team. "Coupled with our current environment of physical inactivity and over-abundance of food, this "metabolic syndrome" will become the primary health issue of the 21st century" The research paper is titled "Cardiovascular Risk Factors from Artificial Selection for Low Aerobic Capacity in Rats." Along with researchers from the Norwegian University of Science and Technology; St. Olav's Hospital in Trondhelm, Norway; the Medical College of Ohio; and the University of Michigan, Swoap examined rats that had been genetically selected for high or low proficiency in endurance running. "In humans, the strong statistical association between fitness and survival suggests a link between impaired oxygen metabolism and disease," the article reports. "[Indeed,] after 11 generations, rats with low aerobic capacity scored high on cardiovascular risk factors that constitute the metabolic syndrome." Swoap's research "supports the notion that impaired regulation of oxidative pathways in mitochondria may be a common factor liking reduced total-body aerobic capacity to cardiovascular and metabolic disease." His research has been published in the American Journal of Physiology, the Journal of Experimental Biology and the Journal of Applied Physiology and is supported through multi-year grants from the National Institutes of Health (NIH) and the National Science Foundation (NSF). The NIH awarded him nearly $100,000 to determine why skeletal muscle becomes more fatigable after disuse, and the NSF has funded his research on the mechanism of how restricting caloric intake lowers blood pressure, with grants totaling more than $700,000. In 2001, Swoap won the Arthur C. Guyton Award for Excellence in Integrative Physiology from the American Physiological Society, for demonstrating outstanding promise in his research program in physiology. He was also invited to give a lecture on "Molecular Biology in Skeletal Muscles" at the 2001 meeting of the New England American College of Sports Medicine and was the winner of the American College of Sports Medicine New Investigator Award in 2000. Swoap is the chair of the biochemistry and molecular biology program at Williams College, where he has taught since 1996. His research has focused on the molecular bases of changes in muscle physiology, and how muscle fibers change as a result of exercise. In addition to courses on physiology, Swoap teaches the popular "Biology of Exercise and Nutrition" class, which attracted over 10 percent of the student body its first year offered. He earned his B.S. in biology from Trinity University in 1990 and his Ph.D. in physiology and biophysics from the University of California at Irvine in 1994. He did post-doctoral work at the University of Texas Southwestern Medical Center in Dallas. Science is published by the American Association for the Advancement of Science, an international non-profit organization with a mission to "advance science and serve society" through initiatives in science policy, international programs, science education and the publication of scientific newsletters, books and reports. http://www.williams.edu/
Total406 [ page11/28 ]
No. 제목 작성자 작성일 조회수
256 Congratulations to Sunghyun Kang 2007.02.22 한진 2007.02.22 1,922
255 Pancortin-2 interacts with WAVE1 and Bcl-xL in a mitochondria-associated protein complex that mediates ischemic neuronal death. 2007.02.20 한진 2007.02.20 2,165
254 ATP-sensitive potassium channel: A novel target for protection against UV-induced human skin cell damage. 2007.02.20 한진 2007.02.20 2,665
253 How To Spice Up Your Sex Life 첨부파일 2007.02.10 한진 2007.02.10 4,600
252 미토콘드리아(mitochondria)에 독성(toxicity)이 야기되면서 알츠하이머병(Alzheimer's disease) 2007.02.10 한진 2007.02.10 2,601
251 Mitochondrial DNA as a potential tool for early cancer detection 2007.02.10 한진 2007.02.10 2,017
250 A dream come true 2007.01.31 한진 2007.01.31 2,204
249 So how can chillies kill off cancer cells? 2007.01.31 한진 2007.01.31 1,897
248 A New Way to Fight Cancer? 2007.01.31 한진 2007.01.31 2,192
247 Glowing Reports From Mitochondria 2007.01.31 한진 2007.01.31 1,936
246 Congratulation!! Our paper posted "Most accessed articles in 2006" in Proteomics 첨부파일 2007.01.16 한진 2007.01.16 2,988
245 Preconditioning Enters the Era of "Physiological Proteomics" 2007.01.14 한진 2007.01.14 3,075
244 How spicy foods to kill cancer cells- Capsaicin!!! 첨부파일 2007.01.11 dang van cuong 2007.01.11 2,426
243 Researchers Uncover Mitochondrial Defect Involved With Inherited Cancers 2007.01.11 한진 2007.01.11 1,988
242 Coenzyme Q10 and Exercise Training Benefit Patients With Chronic Heart Failure 2007.01.11 한진 2007.01.11 1,804
처음 이전 11 12 13 14 15 16 17 18 19 20 다음 마지막