0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

Computational Model Simulates AZT Metabolism In Mitochondria

  • 작성자한진
  • 작성일2006-07-27 09:59:31
  • 조회수2091
  • 첨부파일첨부파일
7/24/2006 Blacksburg, VA - Researchers at the Virginia Bioinformatics Institute (VBI) at Virginia Tech have developed a computational model that allows scientists to better understand the metabolism and toxicity of the HIV/AIDS drug zidovudine (azidothymidine, AZT). AZT is used successfully as part of Highly Active Anti-Retroviral Therapy (HAART) to control the level of the human immunodeficiency virus in HIV-infected individuals. However, long-term use of AZT may lead to side-effects in some patients. David Samuels and coworkers are interested in finding out whether the toxic side effects of AZT can eventually be minimized or even eliminated. For this purpose, they have been developing a detailed computational model that allows scientists to simulate the biochemical reactions that take place when AZT is metabolized in cells, including their mitochondria, under different metabolic conditions. Drugs like AZT may interfere with DNA replication in the mitochondria, the energy factories of our cells, and can lead to potentially fatal side effects in patients undergoing HAART treatment. Samuels, assistant professor at VBI, commented: "HAART is one of the biggest success stories in modern medicine. The goal of our work is to help improve this successful treatment by understanding the toxic effects that AZT can have in some people. There are many different ways that AZT could possibly interfere with mitochondria to cause the toxic side-effects. Our job is to model these proposed toxicity mechanisms to see which ones could actually lead to the mitochondrial defects found in AIDS patients." He added: "It is possible that no single mechanism is responsible for the toxicity, but that instead a combination of multiple effects is needed. That is the kind of problem that needs a systems biology approach." When AZT reaches a cell, it is subject to some of the same metabolic modifications or phosphorylation events that are encountered by the four naturally occurring deoxynucleosides, the building blocks used to make DNA. However, modified AZT molecules lack a specific chemical group (a hydroxyl group) that would allow DNA replication to continue. This results in premature termination of DNA synthesis. It is thought that the triphosphorylated form of AZT can enter the mitochondrial matrix, the inner core of the mitochondrion, and disrupt the replication of mitochondrial DNA by prematurely terminating DNA synthesis. Samuels added: "We're just starting our work. It is too early to say what the mechanism of mitochondrial toxicity of AZT is. The inhibition of deoxynucleoside metabolism is one possibility. The incorporation of AZT into mitochondrial DNA is another." He added: "The detailed computational model that we have developed should allow researchers to explore different hypotheses as to why AZT can lead to such debilitating side effects in some patients undergoing anti-retroviral treatment." SOURCE: Virginia Bioinformatics Institute
Total406 [ page14/28 ]
No. 제목 작성자 작성일 조회수
211 3D-ultrasound images of fetals 첨부파일 2006.12.01 dang van cuong 2006.12.01 1,882
210 Congratulation-Prof Han Jin (8) 2006.11.20 박원선 2006.11.20 2,222
209 Congratulation!! Cuong!! 전국과학사진공모전 입상 (3) 2006.10.24 한진 2006.10.24 2,326
208 줄기세포, 동물실험서 뇌종양 형성 2006.10.23 한진 2006.10.23 2,180
207 “체질맞춤형 의약품시대가 도래하고 있다” 2006.10.23 한진 2006.10.23 2,126
206 PGC-1 alpha implicated in Huntington's disease neurodegeneration 2006.10.22 한진 2006.10.22 5,091
205 2000년 이후 국내 연구자(제1저자 주소 기준) 생물정보학 논문분석(2006년 10월 13일 현재 기준) 2006.10.13 한진 2006.10.13 2,573
204 Heart signals give clues about potential drug toxicity 2006.10.12 한진 2006.10.12 4,990
203 항비만 식욕 억제 단백질 발견 (1) 2006.10.10 한진 2006.10.10 2,780
202 9월 생물정보학 분야 국내 연구자 논문 발표 실적 (1) 2006.10.10 한진 2006.10.10 2,517
201 Breakthrough offers new tool for studying degenerative disease 2006.10.10 한진 2006.10.10 4,823
200 Scientists Find Clue to Cell Suicides 2006.10.10 한진 2006.10.10 2,246
199 Identification of a mammalian mitochondrial porphyrin transporter 2006.10.10 한진 2006.10.10 2,603
198 Study identifies possible mechanism for brain damage in Huntington's disease 2006.10.10 한진 2006.10.10 2,386
197 The Nobel Prize in Physiology or Medicine 2006 (4)첨부파일 2006.10.04 한진 2006.10.04 2,415
처음 이전 11 12 13 14 15 16 17 18 19 20 다음 마지막