0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

Researchers Uncover Mitochondrial Defect Involved With Inherited Cancers

  • 작성자한진
  • 작성일2007-01-11 01:15:05
  • 조회수1988
  • 첨부파일첨부파일
New York (MedscapeWire) Feb 8 — University of Pittsburgh researchers have uncovered a major new concept of how a certain type of tumor develops by linking a specific defect in mitochondria to a type of inherited tumor. The scientists, led by Bora E. Baysal, MD, PhD, and Bernie Devlin, PhD, department of psychiatry, found that a defective gene on chromosome 11q23, a region previously implicated in the progression of many solid cancerous tumors, causes a hereditary tumor called hereditary paraganglioma. Paraganglioma tumors most commonly occur in the carotid body, a small organ located in the carotid artery in the neck that senses blood oxygen levels. This discovery is important because for the first time it ties a genetic defect in mitochondria to tumor development. Results of the study appear in the February 3 issue of the journal Science. The researchers became interested in families with paraganglioma who show a peculiar inheritance pattern, which can be explained by a process called "genomic imprinting." While the genetic defect is transmitted through both mothers and fathers, tumors develop only when fathers transmit the defect. The researchers found that a gene named succinate-ubiquinone oxido-reductase (SDHD), that codes for an integral part of mitochondrial complex II, was defective in families with paraganglioma. By the researchers' reasoning, the defect is likely to cause mitochondria to fail to properly sense the oxygen levels in the cell. And, because of the oxygen-sensing defect, the carotid body is chronically stimulated to compensate for the lack of oxygen. This chronic stimulation eventually leads to cellular proliferation and tumor development. Chronic atmospheric hypoxia was previously linked to the development of paraganglioma tumors in people living at high altitudes. It is conceivable, argue the researchers, that defective oxygen sensing is a fundamental process for the progression of many common solid cancers. It is well known that lack of oxygen helps the development of more malignant cell types in common solid tumors. "This finding is important because we know that hypoxia actually helps some common forms of cancer become more hardy," said Dr. Baysal. "Most cells, and most cancer cells, are harmed by low oxygen. Low oxygen normally causes cells to self-destruct. In some cancer cells, however, the mechanism for cell death is turned off. These cells reproduce under the difficult conditions brought on by low oxygen levels. The result is that the tumor cells are more aggressive and more difficult to treat. The stressful environment of hypoxia creates a stronger tumor." According to Dr. Baysal, some types of chemotherapy and radiation treatments rely on oxygen as a reagent to destroy cancer cells. In a tumor with low oxygen levels, those therapies cannot be as effective. If the researchers' hypothesis is correct, this discovery may lead to more effective cancer treatments and have important implications for other common diseases where hypoxia is involved, such as stroke and heart attack. Thediscovery of the gene may also reveal novel "genomic imprinting" mechanisms to explain why only fathers transmit this tumor, said Dr. Baysal.
Total406 [ page18/28 ]
No. 제목 작성자 작성일 조회수
151 Agent Protects Parkinson's Neurons From Rotenone Toxicity 2006.04.21 한진 2006.04.21 3,353
150 News Tips from The Journal of Neuroscience 2006.04.21 한진 2006.04.21 3,931
149 Mitochondria tied to bipolar disorder: study 2006.04.21 한진 2006.04.21 2,189
148 와우!! 축하합니다. 염재범 선생님 논문 2편이 출판되었습니다. (6) 2006.04.14 한진 2006.04.14 2,588
147 미토콘드리아가 대사증후군 치료 열쇠 (1) 2006.04.13 김태호 2006.04.13 3,553
146 Am J Physiol 논문 출간되었습니다. 축하합니다. (6)첨부파일 2006.04.08 한진 2006.04.08 2,291
145 축하!! 김형규 선생님 Young Scientist Award 수상 (6) 2006.04.07 한진 2006.04.07 2,062
144 First direct mechanical communication of mitochondria, cardiomyocyte nucleus shown 2006.04.04 한진 2006.04.04 2,232
143 ADHD Drugs and Cardiovascular Risk 첨부파일 2006.04.03 한진 2006.04.03 1,917
142 고재홍, 김현주 선생님 한번 읽어봐주세요.Mitochondrial disease: Powerhouse of disease (3)첨부파일 2006.04.01 한진 2006.04.01 3,454
141 Scientist finds the speed genes 2006.03.24 한진 2006.03.24 2,199
140 New light on muscle efficiency: it is not the power-plant 2006.03.24 한진 2006.03.24 2,088
139 Recipe for perfect racehorse 2006.03.24 한진 2006.03.24 2,255
138 Toxic Chemical Saqrin Damages Genes That Control Brain, Nervous System 2006.03.19 한진 2006.03.19 5,616
137 Edison Pharma, University of Bologna and Columbia University Medical Center Establish Mitochondrial Disease Partnership 2006.03.19 한진 2006.03.19 4,513
처음 이전 11 12 13 14 15 16 17 18 19 20 다음 마지막