0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

200여 개의 유전자를 조절하는 오케스트라 지휘자, Npas4 (Nature)

  • 작성자한진
  • 작성일2008-09-25 16:39:30
  • 조회수4332
  • 첨부파일첨부파일
Balancing the brain Factor spurring formation of inhibitory synapses gives clues to neurologic disorders Neuroscientists at Children's Hospital Boston have identified the first known "master switch" in brain cells to orchestrate the formation and maintenance of inhibitory synapses, essential for proper brain function. The factor, called Npas4, regulates more than 200 genes that act in various ways to calm down over-excited cells, restoring a balance that is thought to go askew in some neurologic disorders. The findings appear in the September 24 advance online edition of the journal Nature. Synapses, the connections between brain cells, can be excitatory or inhibitory in nature. At birth, the rapidly developing brain teems with excitatory synapses, which tend to make nerve cells "fire" and stimulate their neighbors. But if the excitation isn't eventually balanced, it can lead to epilepsy, and diseases like autism and schizophrenia have been associated with an imbalance of excitation and inhibition. The creation of inhibitory connections is also necessary to launch critical periods -- windows of rapid learning during early childhood and adolescence, when the brain is very "plastic" and able to rewire itself. Npas4 is a transcription factor, a switch that activates or represses other genes. The researchers, led by Michael Greenberg, PhD, director of the Neurobiology Program at Children's, demonstrated that the activity of as many as 270 genes changes when Npas4 activity is blocked in a cell, and that Npas4 activation is associated with an increased number of inhibitory synapses on the cell's surface. The team further showed that Npas4 is activated by excitatory synaptic activity. "Excitation turns on a program that says, 'this cell is getting excited, we need to balance that with inhibition,'" explains Greenberg, who now also chairs the Department of Neurobiology at Harvard Medical School. Finally, the researchers bred live mice that lacked Npas4, and found evidence of neurologic problems – the mice appeared anxious and hyperactive and were prone to seizures. Greenberg and colleagues are now trying to learn more about the wide variety of genes that Npas4 regulates, each of which could give clues to synapse development and reveal new treatment possibilities for neurologic disorders. "If you have your hand on a transcription factor such as Npas4, new genome-wide technology allows you to essentially identify every target of the transcription factor," says Greenberg. One such target is neurotrophic factor (BDNF), which Greenberg and colleagues previously showed to regulate the maturation and function of inhibitory synapses. ### Children's researchers Takao Hensch, PhD, and Michela Fagiolini, PhD, also in the Neurobiology program, plan to study the Npas4-lacking mice to see if they have abnormalities in the initiation of critical periods; colleague Chinfei Chen, MD, PhD, will also study the mice, further probing how their synapses develop. The study was supported by the F.M. Kirby Foundation, the Nancy Lurie Marks Family Foundation, the Lefler Foundation and the National Institutes of Health. Yingxi Lin, PhD, was first author. Citation: Lin Y; et al. Activity-dependent regulation of GABAergic synapse development by Npas4. Nature Sep 24, 2008 [advance online publication]. After posting online, the article can be viewed at http://dx.doi.org/10.1038/nature07319. Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 11 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 397-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital and its research visit: www.childrenshospital.org/newsroom.
Total406 [ page18/28 ]
No. 제목 작성자 작성일 조회수
151 Agent Protects Parkinson's Neurons From Rotenone Toxicity 2006.04.21 한진 2006.04.21 3,353
150 News Tips from The Journal of Neuroscience 2006.04.21 한진 2006.04.21 3,931
149 Mitochondria tied to bipolar disorder: study 2006.04.21 한진 2006.04.21 2,189
148 와우!! 축하합니다. 염재범 선생님 논문 2편이 출판되었습니다. (6) 2006.04.14 한진 2006.04.14 2,588
147 미토콘드리아가 대사증후군 치료 열쇠 (1) 2006.04.13 김태호 2006.04.13 3,553
146 Am J Physiol 논문 출간되었습니다. 축하합니다. (6)첨부파일 2006.04.08 한진 2006.04.08 2,291
145 축하!! 김형규 선생님 Young Scientist Award 수상 (6) 2006.04.07 한진 2006.04.07 2,062
144 First direct mechanical communication of mitochondria, cardiomyocyte nucleus shown 2006.04.04 한진 2006.04.04 2,232
143 ADHD Drugs and Cardiovascular Risk 첨부파일 2006.04.03 한진 2006.04.03 1,917
142 고재홍, 김현주 선생님 한번 읽어봐주세요.Mitochondrial disease: Powerhouse of disease (3)첨부파일 2006.04.01 한진 2006.04.01 3,454
141 Scientist finds the speed genes 2006.03.24 한진 2006.03.24 2,199
140 New light on muscle efficiency: it is not the power-plant 2006.03.24 한진 2006.03.24 2,088
139 Recipe for perfect racehorse 2006.03.24 한진 2006.03.24 2,255
138 Toxic Chemical Saqrin Damages Genes That Control Brain, Nervous System 2006.03.19 한진 2006.03.19 5,616
137 Edison Pharma, University of Bologna and Columbia University Medical Center Establish Mitochondrial Disease Partnership 2006.03.19 한진 2006.03.19 4,513
처음 이전 11 12 13 14 15 16 17 18 19 20 다음 마지막