0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

Researchers Uncover Mitochondrial Defect Involved With Inherited Cancers

  • 작성자한진
  • 작성일2007-01-11 01:15:05
  • 조회수1988
  • 첨부파일첨부파일
New York (MedscapeWire) Feb 8 — University of Pittsburgh researchers have uncovered a major new concept of how a certain type of tumor develops by linking a specific defect in mitochondria to a type of inherited tumor. The scientists, led by Bora E. Baysal, MD, PhD, and Bernie Devlin, PhD, department of psychiatry, found that a defective gene on chromosome 11q23, a region previously implicated in the progression of many solid cancerous tumors, causes a hereditary tumor called hereditary paraganglioma. Paraganglioma tumors most commonly occur in the carotid body, a small organ located in the carotid artery in the neck that senses blood oxygen levels. This discovery is important because for the first time it ties a genetic defect in mitochondria to tumor development. Results of the study appear in the February 3 issue of the journal Science. The researchers became interested in families with paraganglioma who show a peculiar inheritance pattern, which can be explained by a process called "genomic imprinting." While the genetic defect is transmitted through both mothers and fathers, tumors develop only when fathers transmit the defect. The researchers found that a gene named succinate-ubiquinone oxido-reductase (SDHD), that codes for an integral part of mitochondrial complex II, was defective in families with paraganglioma. By the researchers' reasoning, the defect is likely to cause mitochondria to fail to properly sense the oxygen levels in the cell. And, because of the oxygen-sensing defect, the carotid body is chronically stimulated to compensate for the lack of oxygen. This chronic stimulation eventually leads to cellular proliferation and tumor development. Chronic atmospheric hypoxia was previously linked to the development of paraganglioma tumors in people living at high altitudes. It is conceivable, argue the researchers, that defective oxygen sensing is a fundamental process for the progression of many common solid cancers. It is well known that lack of oxygen helps the development of more malignant cell types in common solid tumors. "This finding is important because we know that hypoxia actually helps some common forms of cancer become more hardy," said Dr. Baysal. "Most cells, and most cancer cells, are harmed by low oxygen. Low oxygen normally causes cells to self-destruct. In some cancer cells, however, the mechanism for cell death is turned off. These cells reproduce under the difficult conditions brought on by low oxygen levels. The result is that the tumor cells are more aggressive and more difficult to treat. The stressful environment of hypoxia creates a stronger tumor." According to Dr. Baysal, some types of chemotherapy and radiation treatments rely on oxygen as a reagent to destroy cancer cells. In a tumor with low oxygen levels, those therapies cannot be as effective. If the researchers' hypothesis is correct, this discovery may lead to more effective cancer treatments and have important implications for other common diseases where hypoxia is involved, such as stroke and heart attack. Thediscovery of the gene may also reveal novel "genomic imprinting" mechanisms to explain why only fathers transmit this tumor, said Dr. Baysal.
Total406 [ page23/28 ]
No. 제목 작성자 작성일 조회수
76 “한국의 생명과학 연구... 이제는 양보다 질” 2005.05.14 한진 2005.05.14 1,931
75 심장 빨리 뛰면 돌연사 위험 2005.05.14 한진 2005.05.14 1,884
74 범 캐나다 심장 혈관 질환 연구 2005.05.13 한진 2005.05.13 1,915
73 미토콘드리아에서의 카탈레이즈 발현으로 수명 연장 가능성제시 2005.05.10 한진 2005.05.10 2,125
72 A novel technique for new idea to Mitochondria as Ischemia biomarker (1)첨부파일 2005.05.02 dang van cuong 2005.05.02 2,736
71 Mathematics and Health (1) 2005.04.09 dang van cuong 2005.04.09 1,797
70 신장과 여러 장기의 제 1안지오텐신 수용체가 혈압 조절에 중요 2005.04.06 한진 2005.04.06 2,324
69 심장 세포 사멸에 관련된 미토콘드리아 단백질 2005.04.06 한진 2005.04.06 2,575
68 미토콘드리아.. 단백질 이동 매커니즘이 규명되어 셀(Cell) 최신호 ... (2) 2005.03.29 한진 2005.03.29 3,220
67 The secret of mitochondria.....hmmmm (1) 2005.03.17 주현 2005.03.17 1,885
66 주교수님, 검토바랍니다. 슈퍼컴퓨터와 퍼스널 컴퓨터의 구조는 어떻게 다르죠? (3) 2005.03.17 한진 2005.03.17 2,879
65 '반지의 제왕' 특수효과 비결은 슈퍼컴퓨터? 2005.03.17 한진 2005.03.17 2,121
64 괴로운 스트레스, 정말 벗어버리고 싶다! 2005.03.17 한진 2005.03.17 2,136
63 세포는 스트레스를 무서워한다? 2005.03.17 한진 2005.03.17 1,788
62 Paradoxical effects of green tea (camellia sinensis) and antioxidant vitamins in diabetic rats: improved retinopathy and renal mitochondrial defects but deterioration of collagen matrix glycoxidation and cross-linking.(Complications) 2005.03.01 한진 2005.03.01 9,027
처음 이전 21 22 23 24 25 26 27 28 다음마지막