0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

와우!! 축하합니다. 염재범 선생님 논문 2편이 출판되었습니다.

  • 작성자한진
  • 작성일2006-04-14 02:02:29
  • 조회수2589
  • 첨부파일첨부파일
Philos Transact A Math Phys Eng Sci. 2006 May 15;364(1842):1135-54. A mathematical model of pacemaker activity recorded from mouse small intestine. Youm JB, Kim N, Han J, Kim E, Joo H, Leem CH, Goto G, Noma A, Earm YE. College of Medicine, 2020 Cardiovascular Institute, Inje University Mitochondrial Signaling Laboratory, Department of Physiology and Biophysics Busan 614-735, South Korea. The pacemaker activity of interstitial cells of Cajal (ICCs) has been known to initiate the propagation of slow waves along the whole gastrointestinal tract through spontaneous and repetitive generation of action potentials. We studied the mechanism of the pacemaker activity of ICCs in the mouse small intestine and tested it using a mathematical model. The model includes ion channels, exchanger, pumps and intracellular machinery for Ca(2+) regulation. The model also incorporates inositol 1,4,5-triphosphate (IP(3)) production and IP(3)-mediated Ca(2+) release activities. Most of the parameters were obtained from the literature and were modified to fit the experimental results of ICCs from mouse small intestine. We were then able to compose a mathematical model that simulates the pacemaker activity of ICCs. The model generates pacemaker potentials regularly and repetitively as long as the simulation continues. The frequency was set at 20min(-1) and the duration at 50% repolarization was 639ms. The resting and overshoot potentials were -78 and +1.2mV, respectively. The reconstructed pacemaker potentials closely matched those obtained from animal experiments. The model supports the idea that cyclic changes in [Ca(2+)](i) and [IP(3)] play key roles in the generation of ICC pacemaker activity in the mouse small intestine. ================================================================================================ 1: Philos Transact A Math Phys Eng Sci. 2006 May 15;364(1842):1223-43. Links Simulation of Ca(2+)-activated Cl(-) current of cardiomyocytes in rabbit pulmonary vein: implications of subsarcolemmal Ca(2+) dynamics. Leem CH, Kim WT, Ha JM, Lee YJ, Seong HC, Choe H, Jang YJ, Youm JB, Earm YE. University of Ulsan College of Medicine Department of Physiology 388-1 Poongnap-Dong Songpa-Ku, Seoul 138-736, South Korea. In recent studies, we recorded transiently activated outward currents by the application of three-step voltage pulses to induce a reverse mode of Na(+)-Ca(2+) exchange (NCX). We found that these currents were mediated by a Ca(2+)-activated Cl(-) current. Based on the recent reports describing the atrial Ca(2+) transients, the Ca(2+) transient at the subsarcolemmal space was initiated and then diffused into the cytosolic space. Because the myocardium in the pulmonary vein is an extension of the atrium, the Ca(2+)-activated Cl(-) current may reflect the subsarcolemmal Ca(2+) dynamics. We tried to predict the subsarcolemmal Ca(2+) dynamics by simulating these current traces. According to recent reports on the geometry of atrial myocytes, we assumed that there were three compartments of sarcoplasmic reticulum (SR): a network SR, a junctional SR and a central SR. Based on these structures, we also divided the cytosolic space into three compartments: the junctional, subsarcolemmal and cytosolic spaces. Geometry information and cellular capacitance suggested that there were essentially no T-tubules in these cells. The basic physical data, such as the compartmental volumes, the diffusion coefficients and the stability coefficients of the Ca(2+) buffers, were obtained from the literature. In the simulation, we incorporated the NCX, the L-type Ca(2+) channel, the rapid activating outward rectifier K(+) channel, the Na(+)-K(+) pump, the SR Ca(2+)-pump, the ryanodine receptor, the Ca(2+)-activated Cl(-) channel and the dynamics of Na(+), K(+), Ca(2+) and Cl(-). In these conditions, we could successfully reconstruct the Ca(2+)-activated Cl(-) currents. The simulation allowed estimation of the Ca(2+) dynamics of each compartment and the distribution of the Ca(2+)-activated Cl(-) channel and the NCX in the sarcolemma on the junctional or subsarcolemmal space.
Total406 [ page23/28 ]
No. 제목 작성자 작성일 조회수
76 “한국의 생명과학 연구... 이제는 양보다 질” 2005.05.14 한진 2005.05.14 1,932
75 심장 빨리 뛰면 돌연사 위험 2005.05.14 한진 2005.05.14 1,885
74 범 캐나다 심장 혈관 질환 연구 2005.05.13 한진 2005.05.13 1,916
73 미토콘드리아에서의 카탈레이즈 발현으로 수명 연장 가능성제시 2005.05.10 한진 2005.05.10 2,126
72 A novel technique for new idea to Mitochondria as Ischemia biomarker (1)첨부파일 2005.05.02 dang van cuong 2005.05.02 2,737
71 Mathematics and Health (1) 2005.04.09 dang van cuong 2005.04.09 1,797
70 신장과 여러 장기의 제 1안지오텐신 수용체가 혈압 조절에 중요 2005.04.06 한진 2005.04.06 2,324
69 심장 세포 사멸에 관련된 미토콘드리아 단백질 2005.04.06 한진 2005.04.06 2,575
68 미토콘드리아.. 단백질 이동 매커니즘이 규명되어 셀(Cell) 최신호 ... (2) 2005.03.29 한진 2005.03.29 3,220
67 The secret of mitochondria.....hmmmm (1) 2005.03.17 주현 2005.03.17 1,885
66 주교수님, 검토바랍니다. 슈퍼컴퓨터와 퍼스널 컴퓨터의 구조는 어떻게 다르죠? (3) 2005.03.17 한진 2005.03.17 2,879
65 '반지의 제왕' 특수효과 비결은 슈퍼컴퓨터? 2005.03.17 한진 2005.03.17 2,121
64 괴로운 스트레스, 정말 벗어버리고 싶다! 2005.03.17 한진 2005.03.17 2,136
63 세포는 스트레스를 무서워한다? 2005.03.17 한진 2005.03.17 1,788
62 Paradoxical effects of green tea (camellia sinensis) and antioxidant vitamins in diabetic rats: improved retinopathy and renal mitochondrial defects but deterioration of collagen matrix glycoxidation and cross-linking.(Complications) 2005.03.01 한진 2005.03.01 9,027
처음 이전 21 22 23 24 25 26 27 28 다음마지막