0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

미토콘드리아와 건강

  • 작성자주현
  • 작성일2005-01-30 19:07:47
  • 조회수1836
  • 첨부파일첨부파일
Association between fitness and survival suggests a link between impaired oxygen metabolism and disease Posted By: News-Medical in Medical Research News Published: Wednesday, 26-Jan-2005 Research published in the current issue of Science magazine reinforces the belief that aerobic capacity is an important determinant in the continuum between health and disease. "Our data clearly show that the some of the major health problems of today, namely obesity, hypertension, and insulin resistance, are strongly influenced by our genes," said Steven Swoap, associate professor of biology at Williams Colleges, a member of the research team. "Coupled with our current environment of physical inactivity and over-abundance of food, this "metabolic syndrome" will become the primary health issue of the 21st century" The research paper is titled "Cardiovascular Risk Factors from Artificial Selection for Low Aerobic Capacity in Rats." Along with researchers from the Norwegian University of Science and Technology; St. Olav's Hospital in Trondhelm, Norway; the Medical College of Ohio; and the University of Michigan, Swoap examined rats that had been genetically selected for high or low proficiency in endurance running. "In humans, the strong statistical association between fitness and survival suggests a link between impaired oxygen metabolism and disease," the article reports. "[Indeed,] after 11 generations, rats with low aerobic capacity scored high on cardiovascular risk factors that constitute the metabolic syndrome." Swoap's research "supports the notion that impaired regulation of oxidative pathways in mitochondria may be a common factor liking reduced total-body aerobic capacity to cardiovascular and metabolic disease." His research has been published in the American Journal of Physiology, the Journal of Experimental Biology and the Journal of Applied Physiology and is supported through multi-year grants from the National Institutes of Health (NIH) and the National Science Foundation (NSF). The NIH awarded him nearly $100,000 to determine why skeletal muscle becomes more fatigable after disuse, and the NSF has funded his research on the mechanism of how restricting caloric intake lowers blood pressure, with grants totaling more than $700,000. In 2001, Swoap won the Arthur C. Guyton Award for Excellence in Integrative Physiology from the American Physiological Society, for demonstrating outstanding promise in his research program in physiology. He was also invited to give a lecture on "Molecular Biology in Skeletal Muscles" at the 2001 meeting of the New England American College of Sports Medicine and was the winner of the American College of Sports Medicine New Investigator Award in 2000. Swoap is the chair of the biochemistry and molecular biology program at Williams College, where he has taught since 1996. His research has focused on the molecular bases of changes in muscle physiology, and how muscle fibers change as a result of exercise. In addition to courses on physiology, Swoap teaches the popular "Biology of Exercise and Nutrition" class, which attracted over 10 percent of the student body its first year offered. He earned his B.S. in biology from Trinity University in 1990 and his Ph.D. in physiology and biophysics from the University of California at Irvine in 1994. He did post-doctoral work at the University of Texas Southwestern Medical Center in Dallas. Science is published by the American Association for the Advancement of Science, an international non-profit organization with a mission to "advance science and serve society" through initiatives in science policy, international programs, science education and the publication of scientific newsletters, books and reports. http://www.williams.edu/
Total406 [ page23/28 ]
No. 제목 작성자 작성일 조회수
76 “한국의 생명과학 연구... 이제는 양보다 질” 2005.05.14 한진 2005.05.14 1,932
75 심장 빨리 뛰면 돌연사 위험 2005.05.14 한진 2005.05.14 1,885
74 범 캐나다 심장 혈관 질환 연구 2005.05.13 한진 2005.05.13 1,916
73 미토콘드리아에서의 카탈레이즈 발현으로 수명 연장 가능성제시 2005.05.10 한진 2005.05.10 2,126
72 A novel technique for new idea to Mitochondria as Ischemia biomarker (1)첨부파일 2005.05.02 dang van cuong 2005.05.02 2,737
71 Mathematics and Health (1) 2005.04.09 dang van cuong 2005.04.09 1,797
70 신장과 여러 장기의 제 1안지오텐신 수용체가 혈압 조절에 중요 2005.04.06 한진 2005.04.06 2,324
69 심장 세포 사멸에 관련된 미토콘드리아 단백질 2005.04.06 한진 2005.04.06 2,575
68 미토콘드리아.. 단백질 이동 매커니즘이 규명되어 셀(Cell) 최신호 ... (2) 2005.03.29 한진 2005.03.29 3,220
67 The secret of mitochondria.....hmmmm (1) 2005.03.17 주현 2005.03.17 1,885
66 주교수님, 검토바랍니다. 슈퍼컴퓨터와 퍼스널 컴퓨터의 구조는 어떻게 다르죠? (3) 2005.03.17 한진 2005.03.17 2,879
65 '반지의 제왕' 특수효과 비결은 슈퍼컴퓨터? 2005.03.17 한진 2005.03.17 2,121
64 괴로운 스트레스, 정말 벗어버리고 싶다! 2005.03.17 한진 2005.03.17 2,136
63 세포는 스트레스를 무서워한다? 2005.03.17 한진 2005.03.17 1,788
62 Paradoxical effects of green tea (camellia sinensis) and antioxidant vitamins in diabetic rats: improved retinopathy and renal mitochondrial defects but deterioration of collagen matrix glycoxidation and cross-linking.(Complications) 2005.03.01 한진 2005.03.01 9,027
처음 이전 21 22 23 24 25 26 27 28 다음마지막