0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

Age well the mitochondria way

  • 작성자한진
  • 작성일2005-01-27 13:18:23
  • 조회수3546
  • 첨부파일첨부파일
Age well the mitochondria way New Straits Times; 1/13/2004; Yam Cher Seng New Straits Times 01-13-2004 Age well the mitochondria way Byline: Yam Cher Seng Edition: The City Advertiser; 2* Section: Health OKINAWANS have the longest life expectancy and centenarians number about 34 per 1,000,000. Most of them lead active and healthy lives right through old age. The desire for longevity has led man to search for answers about what causes ageing. There are many theories as to why we age and so far the one which has received the most support from the scientific community is the free radical theory and its relationship to mitochondria. Every cell in the body contains a nucleus which has about 500 to 2,000 mitochondria. Mitochondria are elongated thread-like structures about the size of bacteria woven through our cells. Mitochondria are dubbed the powerplants of cells as they utilise over 80 per cent of the oxygen we breathe to produce 90 per cent of the energy required by our cells to function. This process transforms food calories into chemical energy, water, and carbon dioxide. The released chemical energy is then stored in the form of adenosine triphosphate (ATP). ATP is the universal currency of energy used by all living cells similar to petroleum which drives engines of automobiles. This process of burning food to make ATP is called oxidative phosphorylation. Oxidative phosphorylation can only occur in mitochondria and without ATP, our body will not be able to move a muscle, to build, repair and renew damaged cell membranes and structures. ATP is also required for immune components to fight infection and the functioning of vital organs such as the heart, liver, kidneys and lungs. However not all the oxygen utilised by the mitochondria is completely transformed into water and the intermediates of oxygen (free radicals) are very damaging to cell structures. The cell is made up of several components which include the nucleus that stores our DNA, the mitochondria, the golgi and ribosomes, which are the manufacturing centres, and enzymes called lysosomes. Any defects or mutations in mitochondrial DNA lead to diseases, poor energy output and ill-health. Defects in mitochondrial function have now been linked to many of the most common diseases of ageing which include Type II diabetes mellitus, Parkinson's disease, cardiovascular disease, stroke, Alzheimer's disease and cancer. To help neutralise free radical attacks, our body has protective mechanisms in the form of antioxidant nutrients like beta-carotene, vitamin C, vitamin E and antioxidant enzymes like glutathione peroxidase, superoxide dismutase and catalase. Within the mitochondria, L-carnitine and coenzyme Q10 are utilised to nurture the mitochondria and slow down cellular ageing. The primary role of L-carnitine is to transport fatty acids into the inner mitochondrial membrane for conversion into energy. On releasing the fatty acids, the L-carnitine molecule then goes back out and transports another fatty acid molecule, and so on. This process is called the carnitine shuttle. The shuttling of L-carnitine in and out of the mitochondria also prevents the accumulation of excess free and bound fatty acids which can be harmful to the cellular and intracellular cell membranes. L- carnitine conjugates with these fatty acids and transports them out of the mitochondria. As a powerful antioxidant L-carnitine also prevents cells from damage or death when faced with excess free radicals. The energy production process takes place in the mitochondria, via an electron transport chain which is a highly organised structure composed of a series of enzyme systems. Coenzyme Q10 plays a role in shuttling electrons between these enzymes systems and it is through this process that ATP is generated. As very little ATP is stored in the body, coenzyme Q10 must be made available when energy needs arise. If our supply of coenzyme Q10 becomes limited, so will our energy supply. In addition to its important role in energy production, coenzyme Q10 is an excellent antioxidant which can efficiently protect cellular membranes from free radical damage. As both L-carnitine and coenzyme Q10 are vital for the production of ATP, they share a strong synergism in enhancing energy production in the mitochondria. As we age, both these co-factors may decrease, so the need to supplement may be pivotal in protecting against ageing. * Yam Cher Seng, a pharmacist, heads the Bio-Life Health Advisory Panel that organises health talks and the dissemination of natural healthcare and holistic therapies. For details call 03-7728- 7407 (Monday-Friday) or e-mail healthcare@ biolife.com.my
Total406 [ page4/28 ]
No. 제목 작성자 작성일 조회수
361 제 6회 논문연구계획서 발표대회: 최성우 학생 우수상 수상 첨부파일 2010.04.28 최성우 2010.04.28 2,859
360 다이어트 운동과 AMPK와의 관계 2010.04.20 고태희 2010.04.20 4,609
359 인슐린 생산 베타세포 재생 가능 2010.04.06 김형규 2010.04.06 3,453
358 축하합니다. 김나리 선생님: 2010 국제협력연구사업 선정 2010.03.05 한진 2010.03.05 3,581
357 동맥경화 촉진 유전자 찾아냈다...이화여대 오구택 교수 2010.02.25 허혜진 2010.02.25 3,293
356 국지적 항산화단백질 조절 메커니즘 규명...국가과학자 이서구 이화여대 교수 2010.02.25 허혜진 2010.02.25 3,295
355 Prog Biophys Mol Biol논문 accept소식 2010.02.20 박원선 2010.02.20 2,662
354 Pflugers Arch논문 accept소식 2010.02.17 박원선 2010.02.17 1,912
353 장미 박사님 질병관리본부 합격 2010.02.16 박원선 2010.02.16 2,976
352 Seaons's Greetings to ALL 첨부파일 2010.01.04 한진 2010.01.04 1,663
351 안준석 제 5회 부산미래과학자상 수상자 선정 첨부파일 2009.12.02 한진 2009.12.02 4,677
350 인슐린 신호전달과 미토콘드리아 기능을 통합시키는 Foxo1 첨부파일 2009.11.24 홍다혜 2009.11.24 5,358
349 심혈관·대사질환 10대 주목 프로젝트 선정 2009.11.16 한진 2009.11.16 2,357
348 JPS논문 accept소식 2009.11.06 박원선 2009.11.06 1,724
347 Bone논문 accept소식 2009.11.05 박원선 2009.11.05 2,369
처음이전 1 2 3 4 5 6 7 8 9 10 다음 마지막