0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

Age well the mitochondria way

  • 작성자한진
  • 작성일2005-01-27 13:18:23
  • 조회수3546
  • 첨부파일첨부파일
Age well the mitochondria way New Straits Times; 1/13/2004; Yam Cher Seng New Straits Times 01-13-2004 Age well the mitochondria way Byline: Yam Cher Seng Edition: The City Advertiser; 2* Section: Health OKINAWANS have the longest life expectancy and centenarians number about 34 per 1,000,000. Most of them lead active and healthy lives right through old age. The desire for longevity has led man to search for answers about what causes ageing. There are many theories as to why we age and so far the one which has received the most support from the scientific community is the free radical theory and its relationship to mitochondria. Every cell in the body contains a nucleus which has about 500 to 2,000 mitochondria. Mitochondria are elongated thread-like structures about the size of bacteria woven through our cells. Mitochondria are dubbed the powerplants of cells as they utilise over 80 per cent of the oxygen we breathe to produce 90 per cent of the energy required by our cells to function. This process transforms food calories into chemical energy, water, and carbon dioxide. The released chemical energy is then stored in the form of adenosine triphosphate (ATP). ATP is the universal currency of energy used by all living cells similar to petroleum which drives engines of automobiles. This process of burning food to make ATP is called oxidative phosphorylation. Oxidative phosphorylation can only occur in mitochondria and without ATP, our body will not be able to move a muscle, to build, repair and renew damaged cell membranes and structures. ATP is also required for immune components to fight infection and the functioning of vital organs such as the heart, liver, kidneys and lungs. However not all the oxygen utilised by the mitochondria is completely transformed into water and the intermediates of oxygen (free radicals) are very damaging to cell structures. The cell is made up of several components which include the nucleus that stores our DNA, the mitochondria, the golgi and ribosomes, which are the manufacturing centres, and enzymes called lysosomes. Any defects or mutations in mitochondrial DNA lead to diseases, poor energy output and ill-health. Defects in mitochondrial function have now been linked to many of the most common diseases of ageing which include Type II diabetes mellitus, Parkinson's disease, cardiovascular disease, stroke, Alzheimer's disease and cancer. To help neutralise free radical attacks, our body has protective mechanisms in the form of antioxidant nutrients like beta-carotene, vitamin C, vitamin E and antioxidant enzymes like glutathione peroxidase, superoxide dismutase and catalase. Within the mitochondria, L-carnitine and coenzyme Q10 are utilised to nurture the mitochondria and slow down cellular ageing. The primary role of L-carnitine is to transport fatty acids into the inner mitochondrial membrane for conversion into energy. On releasing the fatty acids, the L-carnitine molecule then goes back out and transports another fatty acid molecule, and so on. This process is called the carnitine shuttle. The shuttling of L-carnitine in and out of the mitochondria also prevents the accumulation of excess free and bound fatty acids which can be harmful to the cellular and intracellular cell membranes. L- carnitine conjugates with these fatty acids and transports them out of the mitochondria. As a powerful antioxidant L-carnitine also prevents cells from damage or death when faced with excess free radicals. The energy production process takes place in the mitochondria, via an electron transport chain which is a highly organised structure composed of a series of enzyme systems. Coenzyme Q10 plays a role in shuttling electrons between these enzymes systems and it is through this process that ATP is generated. As very little ATP is stored in the body, coenzyme Q10 must be made available when energy needs arise. If our supply of coenzyme Q10 becomes limited, so will our energy supply. In addition to its important role in energy production, coenzyme Q10 is an excellent antioxidant which can efficiently protect cellular membranes from free radical damage. As both L-carnitine and coenzyme Q10 are vital for the production of ATP, they share a strong synergism in enhancing energy production in the mitochondria. As we age, both these co-factors may decrease, so the need to supplement may be pivotal in protecting against ageing. * Yam Cher Seng, a pharmacist, heads the Bio-Life Health Advisory Panel that organises health talks and the dissemination of natural healthcare and holistic therapies. For details call 03-7728- 7407 (Monday-Friday) or e-mail healthcare@ biolife.com.my
Total406 [ page6/28 ]
No. 제목 작성자 작성일 조회수
331 심장 비대와 연관된 새로운 세포 경로 규명 첨부파일 2009.03.03 홍다혜 2009.03.03 3,705
330 줄기세포연구과정에서 발견한 제2형 당뇨병의 기작 2009.02.26 한진 2009.02.26 2,448
329 심근세포의 증식(hyperplasia) 또는 비대(hypertrophy)를 결정하는 스위치: 심장섬유모세포(cardiac fibroblasts) 2009.02.26 한진 2009.02.26 3,107
328 경남매일에도 김형규쌤 상받는 올랐네요 2009.02.25 최성우 2009.02.25 2,017
327 인제학술대상에 의학과 박사과정 김형규 씨가 수상의 영광 첨부파일 2009.02.20 한진 2009.02.20 2,116
326 site link : National Institue of Health 2009.02.16 최성우 2009.02.16 1,656
325 세계 생리학회 개최, 2009년 2월호 인제대소식지에 실렸습니다 2009.02.10 최성우 2009.02.10 1,896
324 폐경기 여성의 심장 박동수 측정을 통한 심혈관 질환 발병 가능성 예측 첨부파일 2009.02.09 홍다혜 2009.02.09 2,389
323 심장비대를 줄여주는 신약의 개발 첨부파일 2009.02.08 홍다혜 2009.02.08 2,062
322 골다공증 일으키는 새 메커니즘 찾았다! 2009.02.05 홍다혜 2009.02.05 1,811
321 알츠하이머,치매 = 제3형 당뇨병? 2009.02.03 홍다혜 2009.02.03 2,079
320 콘드로이틴, 무릎 골관절염 진행을 지연시키고 증상을 완화 2009.02.02 홍다혜 2009.02.02 1,893
319 유신선생 논문, 축하해주세요. 2009.01.23 한진 2009.01.23 2,109
318 국내연구진, 비만·당뇨·지방간 치료약물 개발 2009.01.22 한진 2009.01.22 2,293
317 [매일경제 등등] 인제대, 15~17일 세계 생리학 학술대회 관련기사 2009.01.20 최성우 2009.01.20 1,916
처음이전 1 2 3 4 5 6 7 8 9 10 다음 마지막