0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

Age well the mitochondria way

  • 작성자한진
  • 작성일2005-01-27 13:18:23
  • 조회수3546
  • 첨부파일첨부파일
Age well the mitochondria way New Straits Times; 1/13/2004; Yam Cher Seng New Straits Times 01-13-2004 Age well the mitochondria way Byline: Yam Cher Seng Edition: The City Advertiser; 2* Section: Health OKINAWANS have the longest life expectancy and centenarians number about 34 per 1,000,000. Most of them lead active and healthy lives right through old age. The desire for longevity has led man to search for answers about what causes ageing. There are many theories as to why we age and so far the one which has received the most support from the scientific community is the free radical theory and its relationship to mitochondria. Every cell in the body contains a nucleus which has about 500 to 2,000 mitochondria. Mitochondria are elongated thread-like structures about the size of bacteria woven through our cells. Mitochondria are dubbed the powerplants of cells as they utilise over 80 per cent of the oxygen we breathe to produce 90 per cent of the energy required by our cells to function. This process transforms food calories into chemical energy, water, and carbon dioxide. The released chemical energy is then stored in the form of adenosine triphosphate (ATP). ATP is the universal currency of energy used by all living cells similar to petroleum which drives engines of automobiles. This process of burning food to make ATP is called oxidative phosphorylation. Oxidative phosphorylation can only occur in mitochondria and without ATP, our body will not be able to move a muscle, to build, repair and renew damaged cell membranes and structures. ATP is also required for immune components to fight infection and the functioning of vital organs such as the heart, liver, kidneys and lungs. However not all the oxygen utilised by the mitochondria is completely transformed into water and the intermediates of oxygen (free radicals) are very damaging to cell structures. The cell is made up of several components which include the nucleus that stores our DNA, the mitochondria, the golgi and ribosomes, which are the manufacturing centres, and enzymes called lysosomes. Any defects or mutations in mitochondrial DNA lead to diseases, poor energy output and ill-health. Defects in mitochondrial function have now been linked to many of the most common diseases of ageing which include Type II diabetes mellitus, Parkinson's disease, cardiovascular disease, stroke, Alzheimer's disease and cancer. To help neutralise free radical attacks, our body has protective mechanisms in the form of antioxidant nutrients like beta-carotene, vitamin C, vitamin E and antioxidant enzymes like glutathione peroxidase, superoxide dismutase and catalase. Within the mitochondria, L-carnitine and coenzyme Q10 are utilised to nurture the mitochondria and slow down cellular ageing. The primary role of L-carnitine is to transport fatty acids into the inner mitochondrial membrane for conversion into energy. On releasing the fatty acids, the L-carnitine molecule then goes back out and transports another fatty acid molecule, and so on. This process is called the carnitine shuttle. The shuttling of L-carnitine in and out of the mitochondria also prevents the accumulation of excess free and bound fatty acids which can be harmful to the cellular and intracellular cell membranes. L- carnitine conjugates with these fatty acids and transports them out of the mitochondria. As a powerful antioxidant L-carnitine also prevents cells from damage or death when faced with excess free radicals. The energy production process takes place in the mitochondria, via an electron transport chain which is a highly organised structure composed of a series of enzyme systems. Coenzyme Q10 plays a role in shuttling electrons between these enzymes systems and it is through this process that ATP is generated. As very little ATP is stored in the body, coenzyme Q10 must be made available when energy needs arise. If our supply of coenzyme Q10 becomes limited, so will our energy supply. In addition to its important role in energy production, coenzyme Q10 is an excellent antioxidant which can efficiently protect cellular membranes from free radical damage. As both L-carnitine and coenzyme Q10 are vital for the production of ATP, they share a strong synergism in enhancing energy production in the mitochondria. As we age, both these co-factors may decrease, so the need to supplement may be pivotal in protecting against ageing. * Yam Cher Seng, a pharmacist, heads the Bio-Life Health Advisory Panel that organises health talks and the dissemination of natural healthcare and holistic therapies. For details call 03-7728- 7407 (Monday-Friday) or e-mail healthcare@ biolife.com.my
Total406 [ page5/28 ]
No. 제목 작성자 작성일 조회수
346 간질과 심장부정맥을 동시에 일으키는 포타슘 이온채널이상 첨부파일 2009.10.21 한진 2009.10.21 3,209
345 PBMB논문 accept소식 2009.10.08 박원선 2009.10.08 2,041
344 BPB 논문 accept소식 2009.10.06 박원선 2009.10.06 2,070
343 p53의 활성화에 따른 지방조직의 노화가 당뇨병을 유발 2009.09.02 한진 2009.09.02 2,038
342 "인삼성분, 관절염 치료에 효과" 2009.08.09 하승희 2009.08.09 1,988
341 기능이 떨어진 미토콘드리아가 노화를 억제? 2009.07.24 홍다혜 2009.07.24 3,479
340 콜라 너무 많이 마시면... 2009.05.21 홍다혜 2009.05.21 2,252
339 Exercise and Vitamins: Now, Wait A Minute. . 첨부파일 2009.05.15 한진 2009.05.15 5,480
338 인간의 두 얼굴. 상황의 힘 2009.04.27 최성우 2009.04.27 2,012
337 인제대학교 개교 30주년 기념 해외석학(Denis Noble 교수) 초청강연 첨부파일 2009.04.26 이소라 2009.04.26 2,711
336 미토콘드리아의 신비를 밝히다 첨부파일 2009.04.10 홍다혜 2009.04.10 2,301
335 심장 세포, 매년 1% 재생 2009.04.06 홍다혜 2009.04.06 1,855
334 급성 심장사와 연관된 10개의 유전자를 확인 2009.03.28 홍다혜 2009.03.28 1,839
333 제 2형 당뇨병을 부르는 낮잠 2009.03.18 홍다혜 2009.03.18 2,016
332 부산대 수지상세포 국가지정연구실 Int J Immunopathol Pharmacol논문 개제 2009.03.11 박원선 2009.03.11 2,552
처음이전 1 2 3 4 5 6 7 8 9 10 다음 마지막