0

Cardiovascular and Metabolic Disease Center
Mitochondrial Research Affinity Collaboration-Laboratories & Engineering

Home > 0

Inadequate cytoplasmic antioxidant enzymes response contributes to the oxidative stress in human hypertension.

  • 작성자한진
  • 작성일2007-01-06 13:44:38
  • 조회수3717
  • 첨부파일첨부파일
Am J Hypertens. 2007 Jan;20(1):62-9. Inadequate cytoplasmic antioxidant enzymes response contributes to the oxidative stress in human hypertension. Chaves FJ, Mansego ML, Blesa S, Gonzalez-Albert V, Jimenez J, Tormos MC, Espinosa O, Giner V, Iradi A, Saez G, Redon J. Research Unit, University of Valencia, Valencia, Spain. Untreated hypertensive patients show increased oxidative stress and decreased antioxidant enzyme activity in mononuclear cells. Therefore, the objective of this study was to determine whether or not the low antioxidant enzyme activity observed in mononuclear cells of hypertensive subjects is in part dependent on a defective activity of antioxidant mechanisms. Activity and mRNA level of antioxidant enzymes, CuZn- and Mn-superoxide dismutases, catalase, glutathione peroxidase type 1, and glutathione reductase were simultaneously measured in mononuclear cells of controls (n = 38) and hypertensive subjects (n = 35), in the absence of and during antihypertensive treatment. An increase in oxidative stress and a decrease in the activity of cytoplasmic enzymes were observed in untreated hypertensive patients. Concurrently, CuZn-superoxide dismutase and glutathione reductase mRNA levels were significantly reduced, and glutathione peroxidase type 1 mRNA was slightly reduced. In contrast, increased activity and mRNA levels of the mitochondrial Mn-superoxide dismutase were observed. Antihypertensive treatment, nonpharmacologic with or without a drug regimen of beta-blocker or angiotensin AT1 receptor blocker was administered for a 3-month period. Afterward, after the improvement in oxidative stress during treatment, a recovery of the cytoplasmic antioxidant enzymatic activity and a more profound decrease in mRNA levels were observed for CuZn-superoxide dismutase, glutathione peroxidase type 1, and glutathione reductase. Meanwhile mitochondrial enzymatic activity decreased, as did the mRNA level. The inadequate response of the main cytoplasmatic antioxidant systems, as well as of the enzymes participating in the maintenance of glutathione levels, may contribute to the vulnerability of hypertensives to oxidative stress.
Total406 [ page26/28 ]
No. 제목 작성자 작성일 조회수
31 Mitochondria and Diabetes 2005.01.30 한진 2005.01.30 2,065
30 건강하게 오래오래 사세요. 2005.01.30 한진 2005.01.30 2,071
29 향후 10년간의 의약품 R&D 예측: 미토콘드리아......심혈관질환의 치료표적 2005.01.30 한진 2005.01.30 2,416
28 말아톤은.... 2005.01.30 한진 2005.01.30 1,936
27 오래 오래 삽시다. 2005.01.30 한진 2005.01.30 3,394
26 중년기의 심혈관 위험인자들이 치매 위험을 증가시켜...... 2005.01.28 한진 2005.01.28 1,934
25 세포 발견이 질병 인식을 이끌어낸다 첨부파일 2005.01.27 강성현 2005.01.27 1,843
24 심장 발작에 대한 9가지 주안점 첨부파일 2005.01.27 강성현 2005.01.27 1,781
23 미토콘드리아에서의 문제점들이 대사적 증후군에 중요한 역할을 한다 첨부파일 2005.01.27 강성현 2005.01.27 1,974
22 보다 나은 근육들을 만듬 첨부파일 2005.01.27 강성현 2005.01.27 2,012
21 다윈의 피리새들 첨부파일 2005.01.27 강성현 2005.01.27 1,924
20 Age well the mitochondria way 2005.01.27 한진 2005.01.27 3,546
19 Mitochondria Make A Comeback, Science (Cover page) 2005.01.27 한진 2005.01.27 3,329
18 The Mitochondrion: Central to Apoptosis (from Science) 2005.01.27 한진 2005.01.27 6,107
17 L-carnitine needed transport fats 2005.01.26 문혜진 2005.01.26 2,661
처음 이전 21 22 23 24 25 26 27 28 다음마지막